Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Use the drop-down menus to choose the steps in order to correctly solve [tex]3 + 4d - 14 = 15 - 5d - 4d[/tex] for [tex]d[/tex].

1. Combine like terms on both sides:
[tex]\[ 3 + 4d - 14 = 15 - 9d \][/tex]
[tex]\[ 4d - 11 = 15 - 9d \][/tex]

2. Move all terms involving [tex]d[/tex] to one side and constants to the other side:
[tex]\[ 4d + 9d = 15 + 11 \][/tex]
[tex]\[ 13d = 26 \][/tex]

3. Solve for [tex]d[/tex]:
[tex]\[ d = \frac{26}{13} \][/tex]
[tex]\[ d = 2 \][/tex]


Sagot :

Sure, let's solve the equation step-by-step.

Given the equation:
[tex]\[ 3 + 4d - 14 = 15 - 5d - 4d \][/tex]

1. Combine like terms on each side of the equation:
[tex]\[ 3 - 14 + 4d = 15 - (5d + 4d) \][/tex]
Simplifying both sides:
[tex]\[ 3 - 14 = -11 \][/tex]
[tex]\[ 15 - 5d - 4d = 15 - 9d \][/tex]
Now the equation looks like:
[tex]\[ -11 + 4d = 15 - 9d \][/tex]

2. Add 9d to both sides to collect all the \(d\)-terms on one side:
[tex]\[ -11 + 4d + 9d = 15 \][/tex]
Simplifying the left side:
[tex]\[ 4d + 9d = 13d \][/tex]
Now the equation is:
[tex]\[ 13d - 11 = 15 \][/tex]

3. Add 11 to both sides to isolate the term with \(d\) on one side:
[tex]\[ 13d - 11 + 11 = 15 + 11 \][/tex]
Simplifying the right side:
[tex]\[ 15 + 11 = 26 \][/tex]
Now the equation is:
[tex]\[ 13d = 26 \][/tex]

4. Divide both sides by the coefficient of \(d\), which is 13, to solve for \(d\):
[tex]\[ d = \frac{26}{13} \][/tex]

5. Simplify the fraction:
[tex]\[ d = 2 \][/tex]

So, the solution to the equation \(3 + 4d - 14 = 15 - 5d - 4d\) is:
[tex]\[ d = 2 \][/tex]

The steps in order are:
1. Combine like terms.
2. Add 9d to both sides.
3. Add 11 to both sides to isolate the term with \(d\).
4. Divide both sides by 13.
5. Simplify the fraction.

Hence, [tex]\(d = 2\)[/tex].