Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find the slope of the line passing through the points [tex](-3, 3)[/tex] and [tex](5, 9)[/tex].

[tex]\square[/tex]

Sagot :

To find the slope of the line passing through the points \((-3, 3)\) and \((5, 9)\), we use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, \((x_1, y_1)\) and \((x_2, y_2)\) are the coordinates of the two points. In our case:
[tex]\[ x_1 = -3, \, y_1 = 3, \, x_2 = 5, \, y_2 = 9 \][/tex]

Substituting these values into the slope formula, we get:
[tex]\[ \text{slope} = \frac{9 - 3}{5 - (-3)} \][/tex]

First, calculate the difference in the y-coordinates \( (y_2 - y_1) \):
[tex]\[ 9 - 3 = 6 \][/tex]

Next, calculate the difference in the x-coordinates \( (x_2 - x_1) \):
[tex]\[ 5 - (-3) = 5 + 3 = 8 \][/tex]

Now, divide the difference in the y-coordinates by the difference in the x-coordinates:
[tex]\[ \text{slope} = \frac{6}{8} = \frac{3}{4} \][/tex]

Thus, the slope of the line passing through the points \((-3, 3)\) and \((5, 9)\) is:
[tex]\[ \boxed{0.75} \][/tex]