Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the slope of the line passing through the points [tex](-3, 3)[/tex] and [tex](5, 9)[/tex].

[tex]\square[/tex]


Sagot :

To find the slope of the line passing through the points \((-3, 3)\) and \((5, 9)\), we use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, \((x_1, y_1)\) and \((x_2, y_2)\) are the coordinates of the two points. In our case:
[tex]\[ x_1 = -3, \, y_1 = 3, \, x_2 = 5, \, y_2 = 9 \][/tex]

Substituting these values into the slope formula, we get:
[tex]\[ \text{slope} = \frac{9 - 3}{5 - (-3)} \][/tex]

First, calculate the difference in the y-coordinates \( (y_2 - y_1) \):
[tex]\[ 9 - 3 = 6 \][/tex]

Next, calculate the difference in the x-coordinates \( (x_2 - x_1) \):
[tex]\[ 5 - (-3) = 5 + 3 = 8 \][/tex]

Now, divide the difference in the y-coordinates by the difference in the x-coordinates:
[tex]\[ \text{slope} = \frac{6}{8} = \frac{3}{4} \][/tex]

Thus, the slope of the line passing through the points \((-3, 3)\) and \((5, 9)\) is:
[tex]\[ \boxed{0.75} \][/tex]