Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve for \(\cos 60^\circ\), we can utilize our knowledge of trigonometry and special angles.
### Step-by-Step Solution:
1. Understanding Special Angles:
The angle \(60^\circ\) is one of the commonly known special angles in trigonometry. The values of sine, cosine, and tangent for these angles are well-documented.
2. Using the Unit Circle:
In the unit circle, angles are measured from the positive x-axis, and for a \(60^\circ\) angle, we can visualize or recall the specific coordinates of the point on the unit circle that corresponds to this angle.
- The coordinates for \(60^\circ\) are \(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\).
3. Definition of Cosine:
The cosine of an angle \( \theta \) in the unit circle is defined as the x-coordinate of the corresponding point.
4. Finding \(\cos 60^\circ\):
Looking at the coordinates \(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\), the x-coordinate is \(\frac{1}{2}\).
Thus, \(\cos 60^\circ = \frac{1}{2}\).
### Verification Options:
We need to check which option matches our determined value:
A. \(\frac{1}{\sqrt{2}}\)
B. \(\frac{\sqrt{3}}{2}\)
C. \(\frac{1}{2}\)
D. \(\frac{1}{\sqrt{3}}\)
E. \(\sqrt{3}\)
F. 1
Since \(\cos 60^\circ = \frac{1}{2}\), the correct option is:
C. [tex]\(\frac{1}{2}\)[/tex].
### Step-by-Step Solution:
1. Understanding Special Angles:
The angle \(60^\circ\) is one of the commonly known special angles in trigonometry. The values of sine, cosine, and tangent for these angles are well-documented.
2. Using the Unit Circle:
In the unit circle, angles are measured from the positive x-axis, and for a \(60^\circ\) angle, we can visualize or recall the specific coordinates of the point on the unit circle that corresponds to this angle.
- The coordinates for \(60^\circ\) are \(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\).
3. Definition of Cosine:
The cosine of an angle \( \theta \) in the unit circle is defined as the x-coordinate of the corresponding point.
4. Finding \(\cos 60^\circ\):
Looking at the coordinates \(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\), the x-coordinate is \(\frac{1}{2}\).
Thus, \(\cos 60^\circ = \frac{1}{2}\).
### Verification Options:
We need to check which option matches our determined value:
A. \(\frac{1}{\sqrt{2}}\)
B. \(\frac{\sqrt{3}}{2}\)
C. \(\frac{1}{2}\)
D. \(\frac{1}{\sqrt{3}}\)
E. \(\sqrt{3}\)
F. 1
Since \(\cos 60^\circ = \frac{1}{2}\), the correct option is:
C. [tex]\(\frac{1}{2}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.