Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

What is [tex]\cos 60^{\circ}[/tex]?

A. [tex]\frac{1}{\sqrt{2}}[/tex]
B. [tex]\frac{\sqrt{3}}{2}[/tex]
C. [tex]\frac{1}{2}[/tex]
D. [tex]\frac{1}{\sqrt{3}}[/tex]
E. [tex]\sqrt{3}[/tex]
F. 1


Sagot :

To solve for \(\cos 60^\circ\), we can utilize our knowledge of trigonometry and special angles.

### Step-by-Step Solution:

1. Understanding Special Angles:
The angle \(60^\circ\) is one of the commonly known special angles in trigonometry. The values of sine, cosine, and tangent for these angles are well-documented.

2. Using the Unit Circle:
In the unit circle, angles are measured from the positive x-axis, and for a \(60^\circ\) angle, we can visualize or recall the specific coordinates of the point on the unit circle that corresponds to this angle.
- The coordinates for \(60^\circ\) are \(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\).

3. Definition of Cosine:
The cosine of an angle \( \theta \) in the unit circle is defined as the x-coordinate of the corresponding point.

4. Finding \(\cos 60^\circ\):
Looking at the coordinates \(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\), the x-coordinate is \(\frac{1}{2}\).

Thus, \(\cos 60^\circ = \frac{1}{2}\).

### Verification Options:
We need to check which option matches our determined value:
A. \(\frac{1}{\sqrt{2}}\)
B. \(\frac{\sqrt{3}}{2}\)
C. \(\frac{1}{2}\)
D. \(\frac{1}{\sqrt{3}}\)
E. \(\sqrt{3}\)
F. 1

Since \(\cos 60^\circ = \frac{1}{2}\), the correct option is:
C. [tex]\(\frac{1}{2}\)[/tex].