Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's break down the problem step-by-step to find the approximate margin of error for the given polling question:
1. Identify the given values:
- The sample size \( n = 400 \)
- The number of favorable responses \( x = 288 \)
- The desired confidence interval of \( 95\% \) corresponds to a \( z^* \)-score of \( 1.96 \).
2. Calculate the sample proportion (\(\hat{p}\)):
[tex]\[ \hat{p} = \frac{x}{n} = \frac{288}{400} = 0.72 \][/tex]
3. Use the formula for the margin of error (\(E\)):
[tex]\[ E = z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \][/tex]
Plugging in the values, we get:
[tex]\[ E = 1.96 \sqrt{\frac{0.72 (1 - 0.72)}{400}} \][/tex]
4. Calculate the quantity inside the square root:
[tex]\[ 0.72 (1 - 0.72) = 0.72 \times 0.28 = 0.2016 \][/tex]
[tex]\[ \frac{0.2016}{400} = 0.000504 \][/tex]
5. Take the square root:
[tex]\[ \sqrt{0.000504} \approx 0.0224 \][/tex]
6. Multiply by the \( z^* \)-score:
[tex]\[ E = 1.96 \times 0.0224 \approx 0.0440 \][/tex]
7. Convert the margin of error to a percentage:
[tex]\[ E \times 100 = 0.0440 \times 100 = 4.40\% \][/tex]
Hence, the approximate margin of error for this polling question is approximately \( 4.4\% \). Therefore, the closest answer among the given options is:
[tex]\[ 4\% \][/tex]
So, the answer is [tex]\( 4\% \)[/tex].
1. Identify the given values:
- The sample size \( n = 400 \)
- The number of favorable responses \( x = 288 \)
- The desired confidence interval of \( 95\% \) corresponds to a \( z^* \)-score of \( 1.96 \).
2. Calculate the sample proportion (\(\hat{p}\)):
[tex]\[ \hat{p} = \frac{x}{n} = \frac{288}{400} = 0.72 \][/tex]
3. Use the formula for the margin of error (\(E\)):
[tex]\[ E = z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \][/tex]
Plugging in the values, we get:
[tex]\[ E = 1.96 \sqrt{\frac{0.72 (1 - 0.72)}{400}} \][/tex]
4. Calculate the quantity inside the square root:
[tex]\[ 0.72 (1 - 0.72) = 0.72 \times 0.28 = 0.2016 \][/tex]
[tex]\[ \frac{0.2016}{400} = 0.000504 \][/tex]
5. Take the square root:
[tex]\[ \sqrt{0.000504} \approx 0.0224 \][/tex]
6. Multiply by the \( z^* \)-score:
[tex]\[ E = 1.96 \times 0.0224 \approx 0.0440 \][/tex]
7. Convert the margin of error to a percentage:
[tex]\[ E \times 100 = 0.0440 \times 100 = 4.40\% \][/tex]
Hence, the approximate margin of error for this polling question is approximately \( 4.4\% \). Therefore, the closest answer among the given options is:
[tex]\[ 4\% \][/tex]
So, the answer is [tex]\( 4\% \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.