Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's tackle each part individually with detailed explanations:
Part A:
To determine the type of function, we need to analyze the given values for each car year by year.
- Car 1:
- Year 1: \$40,500
- Year 2: \$36,450
- Year 3: \$32,805
For Car 1, the value decrement isn't constant. Instead, it seems to decrease by a fixed percentage each year. This type of behavior is characteristic of an exponential decay function.
- Car 2:
- Year 1: \$42,000
- Year 2: \$39,000
- Year 3: \$36,000
For Car 2, the difference in value between years is \$3,000 each time. This indicates a constant decrease, which is characteristic of a linear decay function.
Part B:
Next, we will establish the functions that describe the value of each car after \(x\) years.
- Car 1:
Since Car 1 is decreasing by 10% annually, we can express it as:
[tex]\[ f_1(x) = 45000 \times (0.9)^x \][/tex]
Here, 45,000 is the initial value, and 0.9 represents the remaining value after a 10% decrease each year.
- Car 2:
Since Car 2 decreases by \$3,000 each year, we can express it as:
[tex]\[ f_2(x) = 45000 - 3000 \times x \][/tex]
Here, 45,000 is the initial value, and the term \(3000 \times x\) represents a linear decrease of \$3,000 per year.
Part C:
To find out which car will have the greater value after 13 years and whether there's a significant difference in their values, we use our functions:
- For Car 1 after 13 years:
[tex]\[ f_1(13) = 45000 \times (0.9)^{13} \approx 11438.40 \][/tex]
- For Car 2 after 13 years:
[tex]\[ f_2(13) = 45000 - 3000 \times 13 = 45000 - 39000 = 6000 \][/tex]
Now, comparing these values, Car 1’s value is approximately \(\[tex]$11,438.40\) and Car 2’s value is \(\$[/tex]6,000\).
To determine the difference:
[tex]\[ \text{Difference} = |11438.40 - 6000| = 5438.40 \][/tex]
Therefore, after 13 years, Car 1 will have a value of approximately \(\[tex]$11,438.40\) and Car 2 will have a value of \$[/tex]6,000. The difference in their values will be around \$5,438.40, which is significant.
Conclusion:
Belinda should consider buying Car 1 since it retains more value after 13 years compared to Car 2. There is indeed a significant difference in their values, with Car 1 being worth approximately \$5,438.40 more than Car 2 after 13 years.
Part A:
To determine the type of function, we need to analyze the given values for each car year by year.
- Car 1:
- Year 1: \$40,500
- Year 2: \$36,450
- Year 3: \$32,805
For Car 1, the value decrement isn't constant. Instead, it seems to decrease by a fixed percentage each year. This type of behavior is characteristic of an exponential decay function.
- Car 2:
- Year 1: \$42,000
- Year 2: \$39,000
- Year 3: \$36,000
For Car 2, the difference in value between years is \$3,000 each time. This indicates a constant decrease, which is characteristic of a linear decay function.
Part B:
Next, we will establish the functions that describe the value of each car after \(x\) years.
- Car 1:
Since Car 1 is decreasing by 10% annually, we can express it as:
[tex]\[ f_1(x) = 45000 \times (0.9)^x \][/tex]
Here, 45,000 is the initial value, and 0.9 represents the remaining value after a 10% decrease each year.
- Car 2:
Since Car 2 decreases by \$3,000 each year, we can express it as:
[tex]\[ f_2(x) = 45000 - 3000 \times x \][/tex]
Here, 45,000 is the initial value, and the term \(3000 \times x\) represents a linear decrease of \$3,000 per year.
Part C:
To find out which car will have the greater value after 13 years and whether there's a significant difference in their values, we use our functions:
- For Car 1 after 13 years:
[tex]\[ f_1(13) = 45000 \times (0.9)^{13} \approx 11438.40 \][/tex]
- For Car 2 after 13 years:
[tex]\[ f_2(13) = 45000 - 3000 \times 13 = 45000 - 39000 = 6000 \][/tex]
Now, comparing these values, Car 1’s value is approximately \(\[tex]$11,438.40\) and Car 2’s value is \(\$[/tex]6,000\).
To determine the difference:
[tex]\[ \text{Difference} = |11438.40 - 6000| = 5438.40 \][/tex]
Therefore, after 13 years, Car 1 will have a value of approximately \(\[tex]$11,438.40\) and Car 2 will have a value of \$[/tex]6,000. The difference in their values will be around \$5,438.40, which is significant.
Conclusion:
Belinda should consider buying Car 1 since it retains more value after 13 years compared to Car 2. There is indeed a significant difference in their values, with Car 1 being worth approximately \$5,438.40 more than Car 2 after 13 years.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.