Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the inverse of the given function \( f(x) = \sqrt{x} + 7 \), we need to follow these steps:
1. Replace \( f(x) \) with \( y \):
[tex]\[ y = \sqrt{x} + 7 \][/tex]
2. Solve for \( x \) in terms of \( y \):
- Begin by isolating the square root term:
[tex]\[ y - 7 = \sqrt{x} \][/tex]
- Next, square both sides to eliminate the square root:
[tex]\[ (y - 7)^2 = x \][/tex]
3. Express \( x \) as a function of \( y \):
[tex]\[ x = (y - 7)^2 \][/tex]
This means that the inverse function \( f^{-1}(x) \) is:
[tex]\[ f^{-1}(x) = (x - 7)^2 \][/tex]
4. Consider the domain: Since \( f(x) = \sqrt{x} + 7 \) is defined for \( x \geq 0 \), the inverse function \( f^{-1}(x) \) will be defined for \( x \geq 7 \), ensuring that the argument of the square root is non-negative.
Based on this step-by-step solution, the correct answer is:
B. [tex]\( f^{-1}(x) = (x - 7)^2 \)[/tex], for [tex]\( x \geq 7 \)[/tex].
1. Replace \( f(x) \) with \( y \):
[tex]\[ y = \sqrt{x} + 7 \][/tex]
2. Solve for \( x \) in terms of \( y \):
- Begin by isolating the square root term:
[tex]\[ y - 7 = \sqrt{x} \][/tex]
- Next, square both sides to eliminate the square root:
[tex]\[ (y - 7)^2 = x \][/tex]
3. Express \( x \) as a function of \( y \):
[tex]\[ x = (y - 7)^2 \][/tex]
This means that the inverse function \( f^{-1}(x) \) is:
[tex]\[ f^{-1}(x) = (x - 7)^2 \][/tex]
4. Consider the domain: Since \( f(x) = \sqrt{x} + 7 \) is defined for \( x \geq 0 \), the inverse function \( f^{-1}(x) \) will be defined for \( x \geq 7 \), ensuring that the argument of the square root is non-negative.
Based on this step-by-step solution, the correct answer is:
B. [tex]\( f^{-1}(x) = (x - 7)^2 \)[/tex], for [tex]\( x \geq 7 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.