Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation \(\sqrt{2n + 28} - 4\sqrt{n} = 0\), we'll proceed step-by-step:
1. Isolate one of the square root terms:
First, let's isolate \(\sqrt{2n + 28}\) on one side of the equation:
[tex]\[ \sqrt{2n + 28} = 4 \sqrt{n} \][/tex]
2. Square both sides:
To eliminate the square roots, we'll square both sides of the equation:
[tex]\[ (\sqrt{2n + 28})^2 = (4 \sqrt{n})^2 \][/tex]
Simplify the equation:
[tex]\[ 2n + 28 = 16n \][/tex]
3. Solve for \(n\):
Rearrange the equation to isolate \(n\):
[tex]\[ 2n + 28 = 16n \][/tex]
Subtract \(2n\) from both sides:
[tex]\[ 28 = 14n \][/tex]
Divide both sides by 14:
[tex]\[ n = 2 \][/tex]
4. Check the solution:
We should verify if \(n = 2\) satisfies the original equation. Substitute \(n = 2\) back into the original equation:
[tex]\[ \sqrt{2(2) + 28} - 4 \sqrt{2} = \sqrt{4 + 28} - 4 \sqrt{2} = \sqrt{32} - 4 \sqrt{2} \][/tex]
Since \(\sqrt{32} = 4 \sqrt{2}\), we get:
[tex]\[ 4 \sqrt{2} - 4 \sqrt{2} = 0 \][/tex]
The left side equals the right side, so \(n = 2\) is indeed a solution.
Thus, the solution to the equation \(\sqrt{2n + 28} - 4\sqrt{n} = 0\) is \(n = 2\).
Among the given options:
- \(n = 2\)
- \(n = 4\)
- \(n = 7\)
- \(n = 14\)
The correct answer is [tex]\(n = 2\)[/tex].
1. Isolate one of the square root terms:
First, let's isolate \(\sqrt{2n + 28}\) on one side of the equation:
[tex]\[ \sqrt{2n + 28} = 4 \sqrt{n} \][/tex]
2. Square both sides:
To eliminate the square roots, we'll square both sides of the equation:
[tex]\[ (\sqrt{2n + 28})^2 = (4 \sqrt{n})^2 \][/tex]
Simplify the equation:
[tex]\[ 2n + 28 = 16n \][/tex]
3. Solve for \(n\):
Rearrange the equation to isolate \(n\):
[tex]\[ 2n + 28 = 16n \][/tex]
Subtract \(2n\) from both sides:
[tex]\[ 28 = 14n \][/tex]
Divide both sides by 14:
[tex]\[ n = 2 \][/tex]
4. Check the solution:
We should verify if \(n = 2\) satisfies the original equation. Substitute \(n = 2\) back into the original equation:
[tex]\[ \sqrt{2(2) + 28} - 4 \sqrt{2} = \sqrt{4 + 28} - 4 \sqrt{2} = \sqrt{32} - 4 \sqrt{2} \][/tex]
Since \(\sqrt{32} = 4 \sqrt{2}\), we get:
[tex]\[ 4 \sqrt{2} - 4 \sqrt{2} = 0 \][/tex]
The left side equals the right side, so \(n = 2\) is indeed a solution.
Thus, the solution to the equation \(\sqrt{2n + 28} - 4\sqrt{n} = 0\) is \(n = 2\).
Among the given options:
- \(n = 2\)
- \(n = 4\)
- \(n = 7\)
- \(n = 14\)
The correct answer is [tex]\(n = 2\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.