Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! To solve the given system of equations, let's follow these steps in detail:
The system of equations is:
[tex]\[ \begin{cases} 5x + 2y = 7 \\ -2x + 6y = 9 \end{cases} \][/tex]
### Step 1: Write the system of equations in matrix form
The system can be represented in matrix form as \( A \vec{x} = \vec{B} \), where:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ -2 & 6 \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \vec{B} = \begin{pmatrix} 7 \\ 9 \end{pmatrix} \][/tex]
### Step 2: Calculate the determinant of matrix \( A \)
The determinant of \( A \) is:
[tex]\[ \text{det}(A) = (5 \cdot 6) - (2 \cdot -2) = 30 + 4 = 34 \][/tex]
Since the determinant is non-zero, the matrix \( A \) is invertible, and the system has a unique solution.
### Step 3: Find the inverse of matrix \( A \)
The inverse \( A^{-1} \) is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} 6 & -2 \\ 2 & 5 \end{pmatrix} = \frac{1}{34} \begin{pmatrix} 6 & -2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} \frac{6}{34} & \frac{-2}{34} \\ \frac{2}{34} & \frac{5}{34} \end{pmatrix} \][/tex]
### Step 4: Multiply the inverse of \( A \) with \( B \) to find \( \vec{x} \)
[tex]\[ \vec{x} = A^{-1} \vec{B} = \begin{pmatrix} \frac{6}{34} & \frac{-2}{34} \\ \frac{2}{34} & \frac{5}{34} \end{pmatrix} \begin{pmatrix} 7 \\ 9 \end{pmatrix} \][/tex]
### Step 5: Perform the matrix multiplication
[tex]\[ x = \left( \frac{6}{34} \cdot 7 + \frac{-2}{34} \cdot 9 \right) = \left( \frac{42}{34} - \frac{18}{34} \right) = \frac{24}{34} = \frac{12}{17} \approx 0.705882 \][/tex]
[tex]\[ y = \left( \frac{2}{34} \cdot 7 + \frac{5}{34} \cdot 9 \right) = \left( \frac{14}{34} + \frac{45}{34} \right) = \frac{59}{34} \approx 1.735294 \][/tex]
### Step 6: Extract the y-coordinate and round to the nearest tenth
The calculated value for \( y \) is approximately \( 1.735294 \).
Rounding \( 1.735294 \) to the nearest tenth gives \( 1.7 \).
So, the y-coordinate of the solution, rounded to the nearest tenth, is:
[tex]\[ \boxed{1.7} \][/tex]
The system of equations is:
[tex]\[ \begin{cases} 5x + 2y = 7 \\ -2x + 6y = 9 \end{cases} \][/tex]
### Step 1: Write the system of equations in matrix form
The system can be represented in matrix form as \( A \vec{x} = \vec{B} \), where:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ -2 & 6 \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \vec{B} = \begin{pmatrix} 7 \\ 9 \end{pmatrix} \][/tex]
### Step 2: Calculate the determinant of matrix \( A \)
The determinant of \( A \) is:
[tex]\[ \text{det}(A) = (5 \cdot 6) - (2 \cdot -2) = 30 + 4 = 34 \][/tex]
Since the determinant is non-zero, the matrix \( A \) is invertible, and the system has a unique solution.
### Step 3: Find the inverse of matrix \( A \)
The inverse \( A^{-1} \) is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} 6 & -2 \\ 2 & 5 \end{pmatrix} = \frac{1}{34} \begin{pmatrix} 6 & -2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} \frac{6}{34} & \frac{-2}{34} \\ \frac{2}{34} & \frac{5}{34} \end{pmatrix} \][/tex]
### Step 4: Multiply the inverse of \( A \) with \( B \) to find \( \vec{x} \)
[tex]\[ \vec{x} = A^{-1} \vec{B} = \begin{pmatrix} \frac{6}{34} & \frac{-2}{34} \\ \frac{2}{34} & \frac{5}{34} \end{pmatrix} \begin{pmatrix} 7 \\ 9 \end{pmatrix} \][/tex]
### Step 5: Perform the matrix multiplication
[tex]\[ x = \left( \frac{6}{34} \cdot 7 + \frac{-2}{34} \cdot 9 \right) = \left( \frac{42}{34} - \frac{18}{34} \right) = \frac{24}{34} = \frac{12}{17} \approx 0.705882 \][/tex]
[tex]\[ y = \left( \frac{2}{34} \cdot 7 + \frac{5}{34} \cdot 9 \right) = \left( \frac{14}{34} + \frac{45}{34} \right) = \frac{59}{34} \approx 1.735294 \][/tex]
### Step 6: Extract the y-coordinate and round to the nearest tenth
The calculated value for \( y \) is approximately \( 1.735294 \).
Rounding \( 1.735294 \) to the nearest tenth gives \( 1.7 \).
So, the y-coordinate of the solution, rounded to the nearest tenth, is:
[tex]\[ \boxed{1.7} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.