Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Solve the following system of equations. Enter the [tex]$y$[/tex]-coordinate of the solution. Round your answer to the nearest tenth.

[tex]
\begin{array}{l}
5x + 2y = 7 \\
-2x + 6y = 9
\end{array}
[/tex]

Answer here: ______________


Sagot :

Sure! To solve the given system of equations, let's follow these steps in detail:

The system of equations is:
[tex]\[ \begin{cases} 5x + 2y = 7 \\ -2x + 6y = 9 \end{cases} \][/tex]

### Step 1: Write the system of equations in matrix form
The system can be represented in matrix form as \( A \vec{x} = \vec{B} \), where:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ -2 & 6 \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \vec{B} = \begin{pmatrix} 7 \\ 9 \end{pmatrix} \][/tex]

### Step 2: Calculate the determinant of matrix \( A \)
The determinant of \( A \) is:
[tex]\[ \text{det}(A) = (5 \cdot 6) - (2 \cdot -2) = 30 + 4 = 34 \][/tex]
Since the determinant is non-zero, the matrix \( A \) is invertible, and the system has a unique solution.

### Step 3: Find the inverse of matrix \( A \)
The inverse \( A^{-1} \) is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} 6 & -2 \\ 2 & 5 \end{pmatrix} = \frac{1}{34} \begin{pmatrix} 6 & -2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} \frac{6}{34} & \frac{-2}{34} \\ \frac{2}{34} & \frac{5}{34} \end{pmatrix} \][/tex]

### Step 4: Multiply the inverse of \( A \) with \( B \) to find \( \vec{x} \)
[tex]\[ \vec{x} = A^{-1} \vec{B} = \begin{pmatrix} \frac{6}{34} & \frac{-2}{34} \\ \frac{2}{34} & \frac{5}{34} \end{pmatrix} \begin{pmatrix} 7 \\ 9 \end{pmatrix} \][/tex]

### Step 5: Perform the matrix multiplication
[tex]\[ x = \left( \frac{6}{34} \cdot 7 + \frac{-2}{34} \cdot 9 \right) = \left( \frac{42}{34} - \frac{18}{34} \right) = \frac{24}{34} = \frac{12}{17} \approx 0.705882 \][/tex]
[tex]\[ y = \left( \frac{2}{34} \cdot 7 + \frac{5}{34} \cdot 9 \right) = \left( \frac{14}{34} + \frac{45}{34} \right) = \frac{59}{34} \approx 1.735294 \][/tex]

### Step 6: Extract the y-coordinate and round to the nearest tenth
The calculated value for \( y \) is approximately \( 1.735294 \).

Rounding \( 1.735294 \) to the nearest tenth gives \( 1.7 \).

So, the y-coordinate of the solution, rounded to the nearest tenth, is:
[tex]\[ \boxed{1.7} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.