Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the nature of the dilation, we need to interpret the scale factor \( n \) which is given as \( \frac{1}{3} \).
Step-by-Step Solution:
1. Understanding Dilation:
- Dilation is a transformation that alters the size of a figure, but not its shape.
- The scale factor \( n \) determines how much the figure will be enlarged or reduced.
2. Analyzing the Scale Factor \( n = \frac{1}{3} \):
- A scale factor \( n \) where \( 0 < n < 1 \) indicates a reduction. This means the figure is scaled down.
- A scale factor \( n \) where \( n > 1 \) indicates an enlargement. This means the figure is scaled up.
3. Applying the Given Scale Factor:
- Since \( \frac{1}{3} \) is a fraction that is greater than 0 but less than 1 (\( 0 < \frac{1}{3} < 1 \)), it falls within the reduction range.
4. Conclusion:
- Therefore, \( n = \frac{1}{3} \) produces a reduction in the size of the triangle.
- The correct statement is: \(\text{It is a reduction because } 0 < n < 1\).
So, the true statement regarding the dilation is:
It is a reduction because [tex]\(0 < n < 1\)[/tex].
Step-by-Step Solution:
1. Understanding Dilation:
- Dilation is a transformation that alters the size of a figure, but not its shape.
- The scale factor \( n \) determines how much the figure will be enlarged or reduced.
2. Analyzing the Scale Factor \( n = \frac{1}{3} \):
- A scale factor \( n \) where \( 0 < n < 1 \) indicates a reduction. This means the figure is scaled down.
- A scale factor \( n \) where \( n > 1 \) indicates an enlargement. This means the figure is scaled up.
3. Applying the Given Scale Factor:
- Since \( \frac{1}{3} \) is a fraction that is greater than 0 but less than 1 (\( 0 < \frac{1}{3} < 1 \)), it falls within the reduction range.
4. Conclusion:
- Therefore, \( n = \frac{1}{3} \) produces a reduction in the size of the triangle.
- The correct statement is: \(\text{It is a reduction because } 0 < n < 1\).
So, the true statement regarding the dilation is:
It is a reduction because [tex]\(0 < n < 1\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.