poopey
Answered

Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

What is the product?

[tex]\[
(3x - 6)\left(2x^2 - 7x + 1\right)
\][/tex]

A. \(-12x^2 + 42x - 6\)

B. \(-12x^2 + 21x + 6\)

C. \(6x^3 - 33x^2 + 45x - 6\)

D. [tex]\(6x^3 - 27x^2 - 39x + 6\)[/tex]

Sagot :

Certainly! Let's go through the step-by-step process of expanding the expression:

We need to find the product of:
[tex]\[ (3x - 6) \left(2x^2 - 7x + 1\right) \][/tex]

First, we distribute each term in the first polynomial to each term in the second polynomial.

1. Distribute \(3x\) to each term in \(2x^2 - 7x + 1\):
[tex]\[ 3x \cdot 2x^2 = 6x^3 \][/tex]
[tex]\[ 3x \cdot (-7x) = -21x^2 \][/tex]
[tex]\[ 3x \cdot 1 = 3x \][/tex]

2. Distribute \(-6\) to each term in \(2x^2 - 7x + 1\):
[tex]\[ -6 \cdot 2x^2 = -12x^2 \][/tex]
[tex]\[ -6 \cdot (-7x) = 42x \][/tex]
[tex]\[ -6 \cdot 1 = -6 \][/tex]

Now, combine all these products:
[tex]\[ 6x^3 - 21x^2 + 3x - 12x^2 + 42x - 6 \][/tex]

Next, combine like terms:
[tex]\[ 6x^3 + (-21x^2 - 12x^2) + (3x + 42x) - 6 \][/tex]
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

So, the expanded form of the product of \((3x - 6)\left(2x^2 - 7x + 1\right)\) is:
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

Therefore, the correct answer is:
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]