Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's solve the limit \(\lim_{x \rightarrow 1} \frac{x^2-1}{x-1}\) step-by-step.
1. Identify the given expression:
We need to find the limit of \(\frac{x^2 - 1}{x - 1}\) as \(x\) approaches 1.
2. Factorize the numerator:
Notice that the numerator \(x^2 - 1\) is a difference of squares. This can be factorized as:
[tex]\[ x^2 - 1 = (x + 1)(x - 1) \][/tex]
Now our expression becomes:
[tex]\[ \frac{(x + 1)(x - 1)}{x - 1} \][/tex]
3. Simplify the expression:
Notice that \((x - 1)\) appears in both the numerator and the denominator. As long as \(x \neq 1\), we can cancel out the \((x - 1)\) term:
[tex]\[ \frac{(x + 1)(x - 1)}{x - 1} = x + 1 \][/tex]
4. Evaluate the limit:
Now we have a much simpler expression to evaluate:
[tex]\[ \lim_{x \rightarrow 1} (x + 1) \][/tex]
As \(x\) approaches 1, we substitute \(x = 1\) into the simplified expression:
[tex]\[ x + 1 = 1 + 1 = 2 \][/tex]
5. Conclusion:
Therefore, the limit is:
[tex]\[ \lim_{x \rightarrow 1} \frac{x^2-1}{x-1} = 2 \][/tex]
Hence, the solution is [tex]\(\boxed{2}\)[/tex].
1. Identify the given expression:
We need to find the limit of \(\frac{x^2 - 1}{x - 1}\) as \(x\) approaches 1.
2. Factorize the numerator:
Notice that the numerator \(x^2 - 1\) is a difference of squares. This can be factorized as:
[tex]\[ x^2 - 1 = (x + 1)(x - 1) \][/tex]
Now our expression becomes:
[tex]\[ \frac{(x + 1)(x - 1)}{x - 1} \][/tex]
3. Simplify the expression:
Notice that \((x - 1)\) appears in both the numerator and the denominator. As long as \(x \neq 1\), we can cancel out the \((x - 1)\) term:
[tex]\[ \frac{(x + 1)(x - 1)}{x - 1} = x + 1 \][/tex]
4. Evaluate the limit:
Now we have a much simpler expression to evaluate:
[tex]\[ \lim_{x \rightarrow 1} (x + 1) \][/tex]
As \(x\) approaches 1, we substitute \(x = 1\) into the simplified expression:
[tex]\[ x + 1 = 1 + 1 = 2 \][/tex]
5. Conclusion:
Therefore, the limit is:
[tex]\[ \lim_{x \rightarrow 1} \frac{x^2-1}{x-1} = 2 \][/tex]
Hence, the solution is [tex]\(\boxed{2}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.