Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the correct expression that represents the volume of the pyramid, let's go through the steps clearly:
### Step-by-Step Solution
1. Identify Given Values:
- The area of the base of the pyramid, \( A \), is \( 5.2 \, \text{cm}^2 \).
- The height of the pyramid, \( h \), is given in centimeters (cm).
2. Recall the Volume Formula for a Pyramid:
The volume \( V \) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{(Base Area)} \times \text{Height} \][/tex]
3. Substitute the Given Values into the Formula:
- Base Area, \( A = 5.2 \, \text{cm}^2 \)
- Height, \( h \, \text{cm} \)
Therefore, substituting these values into the volume formula:
[tex]\[ V = \frac{1}{3} \times 5.2 \, \text{cm}^2 \times h \, \text{cm} \][/tex]
4. Combine the Terms:
Combining the terms, we get:
[tex]\[ V = \frac{1}{3} \times 5.2 \times h \, \text{cm}^3 \][/tex]
This matches the option:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
### Conclusion:
The expression that correctly represents the volume of the pyramid is:
[tex]\[ \frac{1}{3}(5.2) h \, \text{cm}^3 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
### Step-by-Step Solution
1. Identify Given Values:
- The area of the base of the pyramid, \( A \), is \( 5.2 \, \text{cm}^2 \).
- The height of the pyramid, \( h \), is given in centimeters (cm).
2. Recall the Volume Formula for a Pyramid:
The volume \( V \) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{(Base Area)} \times \text{Height} \][/tex]
3. Substitute the Given Values into the Formula:
- Base Area, \( A = 5.2 \, \text{cm}^2 \)
- Height, \( h \, \text{cm} \)
Therefore, substituting these values into the volume formula:
[tex]\[ V = \frac{1}{3} \times 5.2 \, \text{cm}^2 \times h \, \text{cm} \][/tex]
4. Combine the Terms:
Combining the terms, we get:
[tex]\[ V = \frac{1}{3} \times 5.2 \times h \, \text{cm}^3 \][/tex]
This matches the option:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
### Conclusion:
The expression that correctly represents the volume of the pyramid is:
[tex]\[ \frac{1}{3}(5.2) h \, \text{cm}^3 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.