Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the correct expression that represents the volume of the pyramid, let's go through the steps clearly:
### Step-by-Step Solution
1. Identify Given Values:
- The area of the base of the pyramid, \( A \), is \( 5.2 \, \text{cm}^2 \).
- The height of the pyramid, \( h \), is given in centimeters (cm).
2. Recall the Volume Formula for a Pyramid:
The volume \( V \) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{(Base Area)} \times \text{Height} \][/tex]
3. Substitute the Given Values into the Formula:
- Base Area, \( A = 5.2 \, \text{cm}^2 \)
- Height, \( h \, \text{cm} \)
Therefore, substituting these values into the volume formula:
[tex]\[ V = \frac{1}{3} \times 5.2 \, \text{cm}^2 \times h \, \text{cm} \][/tex]
4. Combine the Terms:
Combining the terms, we get:
[tex]\[ V = \frac{1}{3} \times 5.2 \times h \, \text{cm}^3 \][/tex]
This matches the option:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
### Conclusion:
The expression that correctly represents the volume of the pyramid is:
[tex]\[ \frac{1}{3}(5.2) h \, \text{cm}^3 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
### Step-by-Step Solution
1. Identify Given Values:
- The area of the base of the pyramid, \( A \), is \( 5.2 \, \text{cm}^2 \).
- The height of the pyramid, \( h \), is given in centimeters (cm).
2. Recall the Volume Formula for a Pyramid:
The volume \( V \) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{(Base Area)} \times \text{Height} \][/tex]
3. Substitute the Given Values into the Formula:
- Base Area, \( A = 5.2 \, \text{cm}^2 \)
- Height, \( h \, \text{cm} \)
Therefore, substituting these values into the volume formula:
[tex]\[ V = \frac{1}{3} \times 5.2 \, \text{cm}^2 \times h \, \text{cm} \][/tex]
4. Combine the Terms:
Combining the terms, we get:
[tex]\[ V = \frac{1}{3} \times 5.2 \times h \, \text{cm}^3 \][/tex]
This matches the option:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
### Conclusion:
The expression that correctly represents the volume of the pyramid is:
[tex]\[ \frac{1}{3}(5.2) h \, \text{cm}^3 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.