Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's first identify the problem and then work through each step carefully.
### Part (a): Who needs more icing to cover all of their cakes?
1. Volume of Sponge Each Used:
Each of them uses \(\frac{8000 \pi}{3} \, \text{cm}^3\) of sponge.
2. Volume of Tanya’s Cake:
The volume \(V\) of a sphere (cake) is given by \(\frac{4}{3} \pi r^3\).
For Tanya, \( r = 5 \) cm.
[tex]\[ V_{\text{Tanya}} = \frac{4}{3} \pi (5^3) = \frac{4}{3} \pi (125) = \frac{500 \pi}{3} \, \text{cm}^3. \][/tex]
3. Volume of Russel’s Cake:
For Russel, \( r = 2 \) cm.
[tex]\[ V_{\text{Russel}} = \frac{4}{3} \pi (2^3) = \frac{4}{3} \pi (8) = \frac{32 \pi}{3} \, \text{cm}^3. \][/tex]
4. Number of Cakes Each can Make:
Using the total volume of sponge, calculate how many cakes they can each make.
[tex]\[ \text{Cakes Tanya} = \frac{\frac{8000 \pi}{3}}{\frac{500 \pi}{3}} = \frac{8000}{500} = 16 \][/tex]
[tex]\[ \text{Cakes Russel} = \frac{\frac{8000 \pi}{3}}{\frac{32 \pi}{3}} = \frac{8000}{32} = 250 \][/tex]
5. Surface Area of Each Cake:
The surface area \(A\) of a sphere is given by \(4 \pi r^2\).
For Tanya, \( r = 5 \) cm.
[tex]\[ A_{\text{Tanya}} = 4 \pi (5^2) = 4 \pi (25) = 100 \pi \, \text{cm}^2. \][/tex]
For Russel, \( r = 2 \) cm.
[tex]\[ A_{\text{Russel}} = 4 \pi (2^2) = 4 \pi (4) = 16 \pi \, \text{cm}^2. \][/tex]
6. Total Surface Area to Cover with Icing:
Multiply the number of cakes by the surface area of each cake.
[tex]\[ \text{Total Surface Area Tanya} = 16 \times 100 \pi = 1600 \pi \, \text{cm}^2. \][/tex]
[tex]\[ \text{Total Surface Area Russel} = 250 \times 16 \pi = 4000 \pi \, \text{cm}^2. \][/tex]
Comparing the total surface areas, we can see that Russel needs more icing because:
[tex]\[ 4000 \pi > 1600 \pi. \][/tex]
### Part (b): How Much More Area Does This Person Need to Cover?
To find the additional area Russel needs to cover compared to Tanya, we subtract the total surface area needed by Tanya from the total surface area needed by Russel.
[tex]\[ \text{Area Difference} = 4000 \pi \, \text{cm}^2 - 1600 \pi \, \text{cm}^2 = 2400 \pi \, \text{cm}^2. \][/tex]
### Conclusion:
(a) Russel needs more icing to cover all of his cakes.
(b) Russel needs to cover an additional [tex]\(2400 \pi\)[/tex] cm[tex]\(^2\)[/tex].
### Part (a): Who needs more icing to cover all of their cakes?
1. Volume of Sponge Each Used:
Each of them uses \(\frac{8000 \pi}{3} \, \text{cm}^3\) of sponge.
2. Volume of Tanya’s Cake:
The volume \(V\) of a sphere (cake) is given by \(\frac{4}{3} \pi r^3\).
For Tanya, \( r = 5 \) cm.
[tex]\[ V_{\text{Tanya}} = \frac{4}{3} \pi (5^3) = \frac{4}{3} \pi (125) = \frac{500 \pi}{3} \, \text{cm}^3. \][/tex]
3. Volume of Russel’s Cake:
For Russel, \( r = 2 \) cm.
[tex]\[ V_{\text{Russel}} = \frac{4}{3} \pi (2^3) = \frac{4}{3} \pi (8) = \frac{32 \pi}{3} \, \text{cm}^3. \][/tex]
4. Number of Cakes Each can Make:
Using the total volume of sponge, calculate how many cakes they can each make.
[tex]\[ \text{Cakes Tanya} = \frac{\frac{8000 \pi}{3}}{\frac{500 \pi}{3}} = \frac{8000}{500} = 16 \][/tex]
[tex]\[ \text{Cakes Russel} = \frac{\frac{8000 \pi}{3}}{\frac{32 \pi}{3}} = \frac{8000}{32} = 250 \][/tex]
5. Surface Area of Each Cake:
The surface area \(A\) of a sphere is given by \(4 \pi r^2\).
For Tanya, \( r = 5 \) cm.
[tex]\[ A_{\text{Tanya}} = 4 \pi (5^2) = 4 \pi (25) = 100 \pi \, \text{cm}^2. \][/tex]
For Russel, \( r = 2 \) cm.
[tex]\[ A_{\text{Russel}} = 4 \pi (2^2) = 4 \pi (4) = 16 \pi \, \text{cm}^2. \][/tex]
6. Total Surface Area to Cover with Icing:
Multiply the number of cakes by the surface area of each cake.
[tex]\[ \text{Total Surface Area Tanya} = 16 \times 100 \pi = 1600 \pi \, \text{cm}^2. \][/tex]
[tex]\[ \text{Total Surface Area Russel} = 250 \times 16 \pi = 4000 \pi \, \text{cm}^2. \][/tex]
Comparing the total surface areas, we can see that Russel needs more icing because:
[tex]\[ 4000 \pi > 1600 \pi. \][/tex]
### Part (b): How Much More Area Does This Person Need to Cover?
To find the additional area Russel needs to cover compared to Tanya, we subtract the total surface area needed by Tanya from the total surface area needed by Russel.
[tex]\[ \text{Area Difference} = 4000 \pi \, \text{cm}^2 - 1600 \pi \, \text{cm}^2 = 2400 \pi \, \text{cm}^2. \][/tex]
### Conclusion:
(a) Russel needs more icing to cover all of his cakes.
(b) Russel needs to cover an additional [tex]\(2400 \pi\)[/tex] cm[tex]\(^2\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.