Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A solid oblique cone with a slant height of 17 units is placed inside an empty cylinder with a congruent base of radius 8 units and a height of 15 units.

What is the unfilled volume inside the cylinder?

A. [tex]$320 \pi$[/tex] cubic units
B. [tex]$597 \pi$[/tex] cubic units
C. [tex]$640 \pi$[/tex] cubic units
D. [tex]$725 \pi$[/tex] cubic units


Sagot :

Let's solve the problem step-by-step.

1. Understanding the problem:
- We have a cylinder with:
- Radius \( r = 8 \) units
- Height \( h = 15 \) units
- Inside this cylinder, there is an oblique cone with:
- The same radius of the base \( r = 8 \) units
- Slant height \( l = 17 \) units

2. Volume of the cylinder:
- The formula for the volume of a cylinder is:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
- Substituting the values:
[tex]\[ V_{\text{cylinder}} = \pi (8)^2 (15) = \pi \times 64 \times 15 = 960 \pi \quad \text{cubic units} \][/tex]

3. Determining the height of the cone:
- We use the Pythagorean theorem for the triangle formed by the radius, height, and slant height of the cone:
[tex]\[ l^2 = r^2 + h_{\text{cone}}^2 \][/tex]
[tex]\[ 17^2 = 8^2 + h_{\text{cone}}^2 \][/tex]
[tex]\[ 289 = 64 + h_{\text{cone}}^2 \][/tex]
[tex]\[ h_{\text{cone}}^2 = 225 \][/tex]
[tex]\[ h_{\text{cone}} = \sqrt{225} = 15 \quad \text{units} \][/tex]

4. Volume of the cone:
- The formula for the volume of a cone is:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h_{\text{cone}} \][/tex]
- Substituting the values:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi (8)^2 (15) = \frac{1}{3} \pi \times 64 \times 15 = \frac{960 \pi}{3} = 320 \pi \quad \text{cubic units} \][/tex]

5. Unfilled volume inside the cylinder:
- The unfilled volume is the volume of the cylinder minus the volume of the cone:
[tex]\[ V_{\text{unfilled}} = V_{\text{cylinder}} - V_{\text{cone}} \][/tex]
[tex]\[ V_{\text{unfilled}} = 960 \pi - 320 \pi = 640 \pi \quad \text{cubic units} \][/tex]

The correct answer is:
[tex]\[ 640 \pi \text{ cubic units} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.