Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve this step-by-step.
Given the polynomial equation:
[tex]\[ x^3 - 10x^2 - 13x + 22 = 0 \][/tex]
### Part (a) Find all potential rational solutions using the Rational Root Theorem
The Rational Root Theorem states that any potential rational solution of the polynomial equation \(a_n x^n + \cdots + a_1 x + a_0 = 0\) is of the form \( \frac{p}{q} \), where \( p \) is a factor of the constant term (\( a_0 \)) and \( q \) is a factor of the leading coefficient (\( a_n \)).
For the polynomial \( x^3 - 10x^2 - 13x + 22 \):
- The constant term \( a_0 \) is \( 22 \).
- The leading coefficient \( a_n \) is \( 1 \).
#### Step 1: Factors of the constant term (22)
The factors of \( 22 \) are:
[tex]\[ \pm 1, \pm 2, \pm 11, \pm 22 \][/tex]
#### Step 2: Factors of the leading coefficient (1)
The factors of \( 1 \) are:
[tex]\[ \pm 1 \][/tex]
#### Step 3: Form potential rational solutions \( \frac{p}{q} \)
Using the factors of the constant term and the factors of the leading coefficient, we get the potential rational solutions:
[tex]\[ \frac{1}{1}, \frac{2}{1}, \frac{11}{1}, \frac{22}{1}, \frac{-1}{1}, \frac{-2}{1}, \frac{-11}{1}, \frac{-22}{1} \][/tex]
Therefore, the potential rational solutions are:
[tex]\[ 1, 2, 11, 22, -1, -2, -11, -22 \][/tex]
### Part (b) Find all the distinct, actual rational solutions
To find the actual rational solutions, we need to test each potential solution by substituting it into the original polynomial equation \( x^3 - 10x^2 - 13x + 22 = 0 \) and see which ones satisfy the equation.
#### Test the potential solutions:
1. \( x = 1 \):
[tex]\[ 1^3 - 10(1)^2 - 13(1) + 22 = 1 - 10 - 13 + 22 = 0 \][/tex]
So, \( x = 1 \) is a root.
2. \( x = 2 \):
[tex]\[ 2^3 - 10(2)^2 - 13(2) + 22 = 8 - 40 - 26 + 22 = -36 \][/tex]
So, \( x = 2 \) is not a root.
3. \( x = 11 \):
[tex]\[ 11^3 - 10(11)^2 - 13(11) + 22 = 1331 - 1210 - 143 + 22 = 0 \][/tex]
So, \( x = 11 \) is a root.
4. \( x = 22 \):
[tex]\[ 22^3 - 10(22)^2 - 13(22) + 22 = 10648 - 4840 - 286 + 22 = 5544 \][/tex]
So, \( x = 22 \) is not a root.
5. \( x = -1 \):
[tex]\[ (-1)^3 - 10(-1)^2 - 13(-1) + 22 = -1 - 10 + 13 + 22 = 24 \][/tex]
So, \( x = -1 \) is not a root.
6. \( x = -2 \):
[tex]\[ (-2)^3 - 10(-2)^2 - 13(-2) + 22 = -8 - 40 + 26 + 22 = 0 \][/tex]
So, \( x = -2 \) is a root.
7. \( x = -11 \):
[tex]\[ (-11)^3 - 10(-11)^2 - 13(-11) + 22 = -1331 - 1210 + 143 + 22 = -2376 \][/tex]
So, \( x = -11 \) is not a root.
8. \( x = -22 \):
[tex]\[ (-22)^3 - 10(-22)^2 - 13(-22) + 22 = -10648 - 4840 + 286 + 22 = -19180 \][/tex]
So, \( x = -22 \) is not a root.
Thus, the actual rational solutions are:
[tex]\[ 1, 11, -2 \][/tex]
### Summary:
- (a) The potential rational solutions are: [tex]\[ 1, 2, 11, 22, -1, -2, -11, -22 \][/tex]
- (b) The actual rational solutions are: [tex]\[ 1, 11, -2 \][/tex]
Given the polynomial equation:
[tex]\[ x^3 - 10x^2 - 13x + 22 = 0 \][/tex]
### Part (a) Find all potential rational solutions using the Rational Root Theorem
The Rational Root Theorem states that any potential rational solution of the polynomial equation \(a_n x^n + \cdots + a_1 x + a_0 = 0\) is of the form \( \frac{p}{q} \), where \( p \) is a factor of the constant term (\( a_0 \)) and \( q \) is a factor of the leading coefficient (\( a_n \)).
For the polynomial \( x^3 - 10x^2 - 13x + 22 \):
- The constant term \( a_0 \) is \( 22 \).
- The leading coefficient \( a_n \) is \( 1 \).
#### Step 1: Factors of the constant term (22)
The factors of \( 22 \) are:
[tex]\[ \pm 1, \pm 2, \pm 11, \pm 22 \][/tex]
#### Step 2: Factors of the leading coefficient (1)
The factors of \( 1 \) are:
[tex]\[ \pm 1 \][/tex]
#### Step 3: Form potential rational solutions \( \frac{p}{q} \)
Using the factors of the constant term and the factors of the leading coefficient, we get the potential rational solutions:
[tex]\[ \frac{1}{1}, \frac{2}{1}, \frac{11}{1}, \frac{22}{1}, \frac{-1}{1}, \frac{-2}{1}, \frac{-11}{1}, \frac{-22}{1} \][/tex]
Therefore, the potential rational solutions are:
[tex]\[ 1, 2, 11, 22, -1, -2, -11, -22 \][/tex]
### Part (b) Find all the distinct, actual rational solutions
To find the actual rational solutions, we need to test each potential solution by substituting it into the original polynomial equation \( x^3 - 10x^2 - 13x + 22 = 0 \) and see which ones satisfy the equation.
#### Test the potential solutions:
1. \( x = 1 \):
[tex]\[ 1^3 - 10(1)^2 - 13(1) + 22 = 1 - 10 - 13 + 22 = 0 \][/tex]
So, \( x = 1 \) is a root.
2. \( x = 2 \):
[tex]\[ 2^3 - 10(2)^2 - 13(2) + 22 = 8 - 40 - 26 + 22 = -36 \][/tex]
So, \( x = 2 \) is not a root.
3. \( x = 11 \):
[tex]\[ 11^3 - 10(11)^2 - 13(11) + 22 = 1331 - 1210 - 143 + 22 = 0 \][/tex]
So, \( x = 11 \) is a root.
4. \( x = 22 \):
[tex]\[ 22^3 - 10(22)^2 - 13(22) + 22 = 10648 - 4840 - 286 + 22 = 5544 \][/tex]
So, \( x = 22 \) is not a root.
5. \( x = -1 \):
[tex]\[ (-1)^3 - 10(-1)^2 - 13(-1) + 22 = -1 - 10 + 13 + 22 = 24 \][/tex]
So, \( x = -1 \) is not a root.
6. \( x = -2 \):
[tex]\[ (-2)^3 - 10(-2)^2 - 13(-2) + 22 = -8 - 40 + 26 + 22 = 0 \][/tex]
So, \( x = -2 \) is a root.
7. \( x = -11 \):
[tex]\[ (-11)^3 - 10(-11)^2 - 13(-11) + 22 = -1331 - 1210 + 143 + 22 = -2376 \][/tex]
So, \( x = -11 \) is not a root.
8. \( x = -22 \):
[tex]\[ (-22)^3 - 10(-22)^2 - 13(-22) + 22 = -10648 - 4840 + 286 + 22 = -19180 \][/tex]
So, \( x = -22 \) is not a root.
Thus, the actual rational solutions are:
[tex]\[ 1, 11, -2 \][/tex]
### Summary:
- (a) The potential rational solutions are: [tex]\[ 1, 2, 11, 22, -1, -2, -11, -22 \][/tex]
- (b) The actual rational solutions are: [tex]\[ 1, 11, -2 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.