Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's proceed step-by-step to calculate the force between \( q_1 \) and \( q_2 \) using Coulomb's Law.
### Step 1: Understanding Coulomb's Law
Coulomb's Law gives us the magnitude of the force between two point charges. The formula is:
[tex]\[ \vec{F}_2 = k_e \frac{\left|q_1 q_2\right|}{r^2} \][/tex]
where:
- \( \vec{F}_2 \) is the force between the charges.
- \( k_e \) is Coulomb's constant, which is \( 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2 \).
- \( q_1 \) and \( q_2 \) are the values of the two charges.
- \( r \) is the distance between the centers of the two charges.
### Step 2: Given Values
From the problem, we have:
- \( k_e = 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2 \)
- \( r = 0.25 \, \text{m} \)
- Charges \( q_1 \) and \( q_2 \) are both assumed to be \( 1 \, \text{C} \).
### Step 3: Applying Values to the Formula
Substitute the given values into Coulomb's Law:
[tex]\[ \vec{F}_2 = k_e \frac{\left|q_1 q_2\right|}{r^2} \][/tex]
### Step 4: Calculation
Substitute the known values:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \frac{\left|1 \times 1\right|}{(0.25)^2} \][/tex]
Simplify the denominator:
[tex]\[ (0.25)^2 = 0.0625 \][/tex]
Now, substitute:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \frac{1}{0.0625} \][/tex]
Calculate the fraction:
[tex]\[ \frac{1}{0.0625} = 16 \][/tex]
So, substituting back:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \times 16 \][/tex]
### Step 5: Final Calculation
Multiply the numbers:
[tex]\[ \vec{F}_2 = 143.84 \times 10^9 \, \text{N} \][/tex]
Thus, the force between the charges is:
[tex]\[ \vec{F}_2 = 143840000000.0 \, \text{N} \][/tex]
Therefore, the magnitude of the force is [tex]\( \boxed{143840000000.0 \, \text{N}} \)[/tex].
### Step 1: Understanding Coulomb's Law
Coulomb's Law gives us the magnitude of the force between two point charges. The formula is:
[tex]\[ \vec{F}_2 = k_e \frac{\left|q_1 q_2\right|}{r^2} \][/tex]
where:
- \( \vec{F}_2 \) is the force between the charges.
- \( k_e \) is Coulomb's constant, which is \( 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2 \).
- \( q_1 \) and \( q_2 \) are the values of the two charges.
- \( r \) is the distance between the centers of the two charges.
### Step 2: Given Values
From the problem, we have:
- \( k_e = 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2 \)
- \( r = 0.25 \, \text{m} \)
- Charges \( q_1 \) and \( q_2 \) are both assumed to be \( 1 \, \text{C} \).
### Step 3: Applying Values to the Formula
Substitute the given values into Coulomb's Law:
[tex]\[ \vec{F}_2 = k_e \frac{\left|q_1 q_2\right|}{r^2} \][/tex]
### Step 4: Calculation
Substitute the known values:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \frac{\left|1 \times 1\right|}{(0.25)^2} \][/tex]
Simplify the denominator:
[tex]\[ (0.25)^2 = 0.0625 \][/tex]
Now, substitute:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \frac{1}{0.0625} \][/tex]
Calculate the fraction:
[tex]\[ \frac{1}{0.0625} = 16 \][/tex]
So, substituting back:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \times 16 \][/tex]
### Step 5: Final Calculation
Multiply the numbers:
[tex]\[ \vec{F}_2 = 143.84 \times 10^9 \, \text{N} \][/tex]
Thus, the force between the charges is:
[tex]\[ \vec{F}_2 = 143840000000.0 \, \text{N} \][/tex]
Therefore, the magnitude of the force is [tex]\( \boxed{143840000000.0 \, \text{N}} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.