Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's proceed step-by-step to calculate the force between \( q_1 \) and \( q_2 \) using Coulomb's Law.
### Step 1: Understanding Coulomb's Law
Coulomb's Law gives us the magnitude of the force between two point charges. The formula is:
[tex]\[ \vec{F}_2 = k_e \frac{\left|q_1 q_2\right|}{r^2} \][/tex]
where:
- \( \vec{F}_2 \) is the force between the charges.
- \( k_e \) is Coulomb's constant, which is \( 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2 \).
- \( q_1 \) and \( q_2 \) are the values of the two charges.
- \( r \) is the distance between the centers of the two charges.
### Step 2: Given Values
From the problem, we have:
- \( k_e = 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2 \)
- \( r = 0.25 \, \text{m} \)
- Charges \( q_1 \) and \( q_2 \) are both assumed to be \( 1 \, \text{C} \).
### Step 3: Applying Values to the Formula
Substitute the given values into Coulomb's Law:
[tex]\[ \vec{F}_2 = k_e \frac{\left|q_1 q_2\right|}{r^2} \][/tex]
### Step 4: Calculation
Substitute the known values:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \frac{\left|1 \times 1\right|}{(0.25)^2} \][/tex]
Simplify the denominator:
[tex]\[ (0.25)^2 = 0.0625 \][/tex]
Now, substitute:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \frac{1}{0.0625} \][/tex]
Calculate the fraction:
[tex]\[ \frac{1}{0.0625} = 16 \][/tex]
So, substituting back:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \times 16 \][/tex]
### Step 5: Final Calculation
Multiply the numbers:
[tex]\[ \vec{F}_2 = 143.84 \times 10^9 \, \text{N} \][/tex]
Thus, the force between the charges is:
[tex]\[ \vec{F}_2 = 143840000000.0 \, \text{N} \][/tex]
Therefore, the magnitude of the force is [tex]\( \boxed{143840000000.0 \, \text{N}} \)[/tex].
### Step 1: Understanding Coulomb's Law
Coulomb's Law gives us the magnitude of the force between two point charges. The formula is:
[tex]\[ \vec{F}_2 = k_e \frac{\left|q_1 q_2\right|}{r^2} \][/tex]
where:
- \( \vec{F}_2 \) is the force between the charges.
- \( k_e \) is Coulomb's constant, which is \( 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2 \).
- \( q_1 \) and \( q_2 \) are the values of the two charges.
- \( r \) is the distance between the centers of the two charges.
### Step 2: Given Values
From the problem, we have:
- \( k_e = 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2 \)
- \( r = 0.25 \, \text{m} \)
- Charges \( q_1 \) and \( q_2 \) are both assumed to be \( 1 \, \text{C} \).
### Step 3: Applying Values to the Formula
Substitute the given values into Coulomb's Law:
[tex]\[ \vec{F}_2 = k_e \frac{\left|q_1 q_2\right|}{r^2} \][/tex]
### Step 4: Calculation
Substitute the known values:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \frac{\left|1 \times 1\right|}{(0.25)^2} \][/tex]
Simplify the denominator:
[tex]\[ (0.25)^2 = 0.0625 \][/tex]
Now, substitute:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \frac{1}{0.0625} \][/tex]
Calculate the fraction:
[tex]\[ \frac{1}{0.0625} = 16 \][/tex]
So, substituting back:
[tex]\[ \vec{F}_2 = 8.99 \times 10^9 \times 16 \][/tex]
### Step 5: Final Calculation
Multiply the numbers:
[tex]\[ \vec{F}_2 = 143.84 \times 10^9 \, \text{N} \][/tex]
Thus, the force between the charges is:
[tex]\[ \vec{F}_2 = 143840000000.0 \, \text{N} \][/tex]
Therefore, the magnitude of the force is [tex]\( \boxed{143840000000.0 \, \text{N}} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.