Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's go through the details of the calculation step-by-step.
Given values:
- Charge \( q_1 = -75.8 \times 10^{-6} \) C
- Charge \( q_2 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
- Charge \( q_3 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
We also assume:
- The distance between \( q_1 \) and \( q_3 \) is \( 0.1 \) m
- The distance between \( q_2 \) and \( q_3 \) is \( 0.1 \) m
Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \).
### Step 1: Calculate Force \( F_1 \)
Force \( F_1 \) is the force exerted on \( q_3 \) by \( q_1 \).
Using Coulomb's law:
[tex]\[ F_1 = k \frac{|q_1 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_1 = 8.99 \times 10^9 \, \frac{|(-75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_1 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since \( q_1 \) is negative and \( q_3 \) is positive, the force \( F_1 \) will be attractive, pulling \( q_3 \) to the left, hence:
[tex]\[ \vec{F}_1 = -5165.33 \text{ N} \][/tex]
### Step 2: Calculate Force \( F_2 \)
Force \( F_2 \) is the force exerted on \( q_3 \) by \( q_2 \).
Using Coulomb's law:
[tex]\[ F_2 = k \frac{|q_2 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_2 = 8.99 \times 10^9 \, \frac{|(75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_2 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since both \( q_2 \) and \( q_3 \) are positive, the force \( F_2 \) will be repulsive, pushing \( q_3 \) to the right, hence:
[tex]\[ \vec{F}_2 = 5165.33 \text{ N} \][/tex]
### Step 3: Calculate Net Force \( F \) on \( q_3 \)
The net force \( \vec{F} \) is the sum of the forces \( \vec{F}_1 \) and \( \vec{F}_2 \):
[tex]\[ \vec{F} = \vec{F}_1 + \vec{F}_2 \][/tex]
Substitute the forces:
[tex]\[ \vec{F} = -5165.33 \text{ N} + 5165.33 \text{ N} \][/tex]
Result:
[tex]\[ \vec{F} = 10330.66 \text{ N} \][/tex]
### Summary
[tex]\[ \begin{aligned} \vec{F}_1 & = -5165.33 \text{ N (left)} \\ \vec{F}_2 & = 5165.33 \text{ N (right)} \\ \vec{F} & = 10330.66 \text{ N (net force to the right)} \\ \end{aligned} \][/tex]
Given values:
- Charge \( q_1 = -75.8 \times 10^{-6} \) C
- Charge \( q_2 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
- Charge \( q_3 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
We also assume:
- The distance between \( q_1 \) and \( q_3 \) is \( 0.1 \) m
- The distance between \( q_2 \) and \( q_3 \) is \( 0.1 \) m
Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \).
### Step 1: Calculate Force \( F_1 \)
Force \( F_1 \) is the force exerted on \( q_3 \) by \( q_1 \).
Using Coulomb's law:
[tex]\[ F_1 = k \frac{|q_1 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_1 = 8.99 \times 10^9 \, \frac{|(-75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_1 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since \( q_1 \) is negative and \( q_3 \) is positive, the force \( F_1 \) will be attractive, pulling \( q_3 \) to the left, hence:
[tex]\[ \vec{F}_1 = -5165.33 \text{ N} \][/tex]
### Step 2: Calculate Force \( F_2 \)
Force \( F_2 \) is the force exerted on \( q_3 \) by \( q_2 \).
Using Coulomb's law:
[tex]\[ F_2 = k \frac{|q_2 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_2 = 8.99 \times 10^9 \, \frac{|(75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_2 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since both \( q_2 \) and \( q_3 \) are positive, the force \( F_2 \) will be repulsive, pushing \( q_3 \) to the right, hence:
[tex]\[ \vec{F}_2 = 5165.33 \text{ N} \][/tex]
### Step 3: Calculate Net Force \( F \) on \( q_3 \)
The net force \( \vec{F} \) is the sum of the forces \( \vec{F}_1 \) and \( \vec{F}_2 \):
[tex]\[ \vec{F} = \vec{F}_1 + \vec{F}_2 \][/tex]
Substitute the forces:
[tex]\[ \vec{F} = -5165.33 \text{ N} + 5165.33 \text{ N} \][/tex]
Result:
[tex]\[ \vec{F} = 10330.66 \text{ N} \][/tex]
### Summary
[tex]\[ \begin{aligned} \vec{F}_1 & = -5165.33 \text{ N (left)} \\ \vec{F}_2 & = 5165.33 \text{ N (right)} \\ \vec{F} & = 10330.66 \text{ N (net force to the right)} \\ \end{aligned} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.