Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's go through the details of the calculation step-by-step.
Given values:
- Charge \( q_1 = -75.8 \times 10^{-6} \) C
- Charge \( q_2 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
- Charge \( q_3 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
We also assume:
- The distance between \( q_1 \) and \( q_3 \) is \( 0.1 \) m
- The distance between \( q_2 \) and \( q_3 \) is \( 0.1 \) m
Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \).
### Step 1: Calculate Force \( F_1 \)
Force \( F_1 \) is the force exerted on \( q_3 \) by \( q_1 \).
Using Coulomb's law:
[tex]\[ F_1 = k \frac{|q_1 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_1 = 8.99 \times 10^9 \, \frac{|(-75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_1 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since \( q_1 \) is negative and \( q_3 \) is positive, the force \( F_1 \) will be attractive, pulling \( q_3 \) to the left, hence:
[tex]\[ \vec{F}_1 = -5165.33 \text{ N} \][/tex]
### Step 2: Calculate Force \( F_2 \)
Force \( F_2 \) is the force exerted on \( q_3 \) by \( q_2 \).
Using Coulomb's law:
[tex]\[ F_2 = k \frac{|q_2 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_2 = 8.99 \times 10^9 \, \frac{|(75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_2 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since both \( q_2 \) and \( q_3 \) are positive, the force \( F_2 \) will be repulsive, pushing \( q_3 \) to the right, hence:
[tex]\[ \vec{F}_2 = 5165.33 \text{ N} \][/tex]
### Step 3: Calculate Net Force \( F \) on \( q_3 \)
The net force \( \vec{F} \) is the sum of the forces \( \vec{F}_1 \) and \( \vec{F}_2 \):
[tex]\[ \vec{F} = \vec{F}_1 + \vec{F}_2 \][/tex]
Substitute the forces:
[tex]\[ \vec{F} = -5165.33 \text{ N} + 5165.33 \text{ N} \][/tex]
Result:
[tex]\[ \vec{F} = 10330.66 \text{ N} \][/tex]
### Summary
[tex]\[ \begin{aligned} \vec{F}_1 & = -5165.33 \text{ N (left)} \\ \vec{F}_2 & = 5165.33 \text{ N (right)} \\ \vec{F} & = 10330.66 \text{ N (net force to the right)} \\ \end{aligned} \][/tex]
Given values:
- Charge \( q_1 = -75.8 \times 10^{-6} \) C
- Charge \( q_2 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
- Charge \( q_3 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
We also assume:
- The distance between \( q_1 \) and \( q_3 \) is \( 0.1 \) m
- The distance between \( q_2 \) and \( q_3 \) is \( 0.1 \) m
Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \).
### Step 1: Calculate Force \( F_1 \)
Force \( F_1 \) is the force exerted on \( q_3 \) by \( q_1 \).
Using Coulomb's law:
[tex]\[ F_1 = k \frac{|q_1 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_1 = 8.99 \times 10^9 \, \frac{|(-75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_1 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since \( q_1 \) is negative and \( q_3 \) is positive, the force \( F_1 \) will be attractive, pulling \( q_3 \) to the left, hence:
[tex]\[ \vec{F}_1 = -5165.33 \text{ N} \][/tex]
### Step 2: Calculate Force \( F_2 \)
Force \( F_2 \) is the force exerted on \( q_3 \) by \( q_2 \).
Using Coulomb's law:
[tex]\[ F_2 = k \frac{|q_2 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_2 = 8.99 \times 10^9 \, \frac{|(75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_2 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since both \( q_2 \) and \( q_3 \) are positive, the force \( F_2 \) will be repulsive, pushing \( q_3 \) to the right, hence:
[tex]\[ \vec{F}_2 = 5165.33 \text{ N} \][/tex]
### Step 3: Calculate Net Force \( F \) on \( q_3 \)
The net force \( \vec{F} \) is the sum of the forces \( \vec{F}_1 \) and \( \vec{F}_2 \):
[tex]\[ \vec{F} = \vec{F}_1 + \vec{F}_2 \][/tex]
Substitute the forces:
[tex]\[ \vec{F} = -5165.33 \text{ N} + 5165.33 \text{ N} \][/tex]
Result:
[tex]\[ \vec{F} = 10330.66 \text{ N} \][/tex]
### Summary
[tex]\[ \begin{aligned} \vec{F}_1 & = -5165.33 \text{ N (left)} \\ \vec{F}_2 & = 5165.33 \text{ N (right)} \\ \vec{F} & = 10330.66 \text{ N (net force to the right)} \\ \end{aligned} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.