Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the probability that the second digit of a locker combination is 8, given that the first digit is already 8, let's follow these steps:
1. Understand the range of possible digits: Nonzero digits range from 1 to 9. Hence, each digit can be one of the nine numbers: 1, 2, 3, 4, 5, 6, 7, 8, or 9.
2. Determine the total number of possible outcomes: Since the second digit can also be any digit from 1 to 9, there are 9 possible choices for the second digit.
3. Identify the favorable outcome: We are interested in the specific event where the second digit is 8. There is only 1 favorable outcome (the digit being 8).
4. Calculate the probability: The probability is the number of favorable outcomes divided by the total number of possible outcomes.
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes (getting an 8)}}{\text{Total number of possible outcomes}} \][/tex]
Plug in the numbers:
[tex]\[ \text{Probability} = \frac{1}{9} \][/tex]
Therefore, the probability that the second number is 8, given that the first number is 8, is \(\frac{1}{9}\).
Thus, the correct answer is:
[tex]\[ \boxed{\frac{1}{9}} \][/tex]
1. Understand the range of possible digits: Nonzero digits range from 1 to 9. Hence, each digit can be one of the nine numbers: 1, 2, 3, 4, 5, 6, 7, 8, or 9.
2. Determine the total number of possible outcomes: Since the second digit can also be any digit from 1 to 9, there are 9 possible choices for the second digit.
3. Identify the favorable outcome: We are interested in the specific event where the second digit is 8. There is only 1 favorable outcome (the digit being 8).
4. Calculate the probability: The probability is the number of favorable outcomes divided by the total number of possible outcomes.
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes (getting an 8)}}{\text{Total number of possible outcomes}} \][/tex]
Plug in the numbers:
[tex]\[ \text{Probability} = \frac{1}{9} \][/tex]
Therefore, the probability that the second number is 8, given that the first number is 8, is \(\frac{1}{9}\).
Thus, the correct answer is:
[tex]\[ \boxed{\frac{1}{9}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.