Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's examine each expression in detail to determine which one results in a rational number when multiplying two irrational numbers together.
### Expression 1: \(\sqrt{11} \times \sqrt{11}\)
The product \(\sqrt{11} \times \sqrt{11}\) can be simplified using the properties of square roots:
[tex]\[ \sqrt{11} \times \sqrt{11} = (\sqrt{11})^2 = 11 \][/tex]
This results in the rational number 11.
### Expression 2: \(4.7813265 \ldots \times \sqrt{5}\)
Next, let's look at the expression involving \(4.7813265 \ldots\) (a decimal approximation) and \(\sqrt{5}\):
[tex]\[ 4.7813265 \ldots \times \sqrt{5} \][/tex]
Upon computing this product, we obtain approximately:
[tex]\[ 10.691371076621147 \][/tex]
Since this is not a whole number and does not have a repeating decimal pattern, it is an irrational number.
### Expression 3: \(\pi \times 3.785492 \ldots\)
Now, consider the product involving \(\pi\) and another decimal approximation:
[tex]\[ \pi \times 3.785492 \ldots \][/tex]
With the calculation, we get approximately:
[tex]\[ 11.892473857422933 \][/tex]
Again, this does not result in a whole number or a repeating decimal, indicating it is irrational.
### Expression 4: \(\sqrt{21} \times \pi\)
Finally, we multiply \(\sqrt{21}\) with \(\pi\):
[tex]\[ \sqrt{21} \times \pi \][/tex]
The computation gives approximately:
[tex]\[ 14.396586137792408 \][/tex]
This too is an irrational number as it does not simplify to a rational form.
### Conclusion
Among all the expressions, only the first expression:
[tex]\[ \sqrt{11} \times \sqrt{11} = 11 \][/tex]
results in a rational number, which is [tex]\(11\)[/tex]. The rest of the expressions yield irrational numbers. Hence, [tex]\(\sqrt{11} \times \sqrt{11}\)[/tex] is the only one where the product of two irrational numbers results in a rational number.
### Expression 1: \(\sqrt{11} \times \sqrt{11}\)
The product \(\sqrt{11} \times \sqrt{11}\) can be simplified using the properties of square roots:
[tex]\[ \sqrt{11} \times \sqrt{11} = (\sqrt{11})^2 = 11 \][/tex]
This results in the rational number 11.
### Expression 2: \(4.7813265 \ldots \times \sqrt{5}\)
Next, let's look at the expression involving \(4.7813265 \ldots\) (a decimal approximation) and \(\sqrt{5}\):
[tex]\[ 4.7813265 \ldots \times \sqrt{5} \][/tex]
Upon computing this product, we obtain approximately:
[tex]\[ 10.691371076621147 \][/tex]
Since this is not a whole number and does not have a repeating decimal pattern, it is an irrational number.
### Expression 3: \(\pi \times 3.785492 \ldots\)
Now, consider the product involving \(\pi\) and another decimal approximation:
[tex]\[ \pi \times 3.785492 \ldots \][/tex]
With the calculation, we get approximately:
[tex]\[ 11.892473857422933 \][/tex]
Again, this does not result in a whole number or a repeating decimal, indicating it is irrational.
### Expression 4: \(\sqrt{21} \times \pi\)
Finally, we multiply \(\sqrt{21}\) with \(\pi\):
[tex]\[ \sqrt{21} \times \pi \][/tex]
The computation gives approximately:
[tex]\[ 14.396586137792408 \][/tex]
This too is an irrational number as it does not simplify to a rational form.
### Conclusion
Among all the expressions, only the first expression:
[tex]\[ \sqrt{11} \times \sqrt{11} = 11 \][/tex]
results in a rational number, which is [tex]\(11\)[/tex]. The rest of the expressions yield irrational numbers. Hence, [tex]\(\sqrt{11} \times \sqrt{11}\)[/tex] is the only one where the product of two irrational numbers results in a rational number.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.