Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's examine each expression in detail to determine which one results in a rational number when multiplying two irrational numbers together.
### Expression 1: \(\sqrt{11} \times \sqrt{11}\)
The product \(\sqrt{11} \times \sqrt{11}\) can be simplified using the properties of square roots:
[tex]\[ \sqrt{11} \times \sqrt{11} = (\sqrt{11})^2 = 11 \][/tex]
This results in the rational number 11.
### Expression 2: \(4.7813265 \ldots \times \sqrt{5}\)
Next, let's look at the expression involving \(4.7813265 \ldots\) (a decimal approximation) and \(\sqrt{5}\):
[tex]\[ 4.7813265 \ldots \times \sqrt{5} \][/tex]
Upon computing this product, we obtain approximately:
[tex]\[ 10.691371076621147 \][/tex]
Since this is not a whole number and does not have a repeating decimal pattern, it is an irrational number.
### Expression 3: \(\pi \times 3.785492 \ldots\)
Now, consider the product involving \(\pi\) and another decimal approximation:
[tex]\[ \pi \times 3.785492 \ldots \][/tex]
With the calculation, we get approximately:
[tex]\[ 11.892473857422933 \][/tex]
Again, this does not result in a whole number or a repeating decimal, indicating it is irrational.
### Expression 4: \(\sqrt{21} \times \pi\)
Finally, we multiply \(\sqrt{21}\) with \(\pi\):
[tex]\[ \sqrt{21} \times \pi \][/tex]
The computation gives approximately:
[tex]\[ 14.396586137792408 \][/tex]
This too is an irrational number as it does not simplify to a rational form.
### Conclusion
Among all the expressions, only the first expression:
[tex]\[ \sqrt{11} \times \sqrt{11} = 11 \][/tex]
results in a rational number, which is [tex]\(11\)[/tex]. The rest of the expressions yield irrational numbers. Hence, [tex]\(\sqrt{11} \times \sqrt{11}\)[/tex] is the only one where the product of two irrational numbers results in a rational number.
### Expression 1: \(\sqrt{11} \times \sqrt{11}\)
The product \(\sqrt{11} \times \sqrt{11}\) can be simplified using the properties of square roots:
[tex]\[ \sqrt{11} \times \sqrt{11} = (\sqrt{11})^2 = 11 \][/tex]
This results in the rational number 11.
### Expression 2: \(4.7813265 \ldots \times \sqrt{5}\)
Next, let's look at the expression involving \(4.7813265 \ldots\) (a decimal approximation) and \(\sqrt{5}\):
[tex]\[ 4.7813265 \ldots \times \sqrt{5} \][/tex]
Upon computing this product, we obtain approximately:
[tex]\[ 10.691371076621147 \][/tex]
Since this is not a whole number and does not have a repeating decimal pattern, it is an irrational number.
### Expression 3: \(\pi \times 3.785492 \ldots\)
Now, consider the product involving \(\pi\) and another decimal approximation:
[tex]\[ \pi \times 3.785492 \ldots \][/tex]
With the calculation, we get approximately:
[tex]\[ 11.892473857422933 \][/tex]
Again, this does not result in a whole number or a repeating decimal, indicating it is irrational.
### Expression 4: \(\sqrt{21} \times \pi\)
Finally, we multiply \(\sqrt{21}\) with \(\pi\):
[tex]\[ \sqrt{21} \times \pi \][/tex]
The computation gives approximately:
[tex]\[ 14.396586137792408 \][/tex]
This too is an irrational number as it does not simplify to a rational form.
### Conclusion
Among all the expressions, only the first expression:
[tex]\[ \sqrt{11} \times \sqrt{11} = 11 \][/tex]
results in a rational number, which is [tex]\(11\)[/tex]. The rest of the expressions yield irrational numbers. Hence, [tex]\(\sqrt{11} \times \sqrt{11}\)[/tex] is the only one where the product of two irrational numbers results in a rational number.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.