Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the correct function rule for translating a square on a coordinate plane, we need to consider how translation affects the coordinates of any point \((x, y)\) on the square.
1. Translating Down:
- Translating a figure 9 units down affects the \(y\)-coordinate. To move a point down, we subtract 9 from the \(y\)-coordinate. Therefore, the \(y\)-coordinate of a point \((x, y)\) will become \(y - 9\).
2. Translating to the Right:
- Translating a figure 1 unit to the right affects the \(x\)-coordinate. To move a point to the right, we add 1 to the \(x\)-coordinate. Therefore, the \(x\)-coordinate of a point \((x, y)\) will become \(x + 1\).
Combining these translations, the new coordinates for any point \((x, y)\) after translating 9 units down and 1 unit to the right will be:
[tex]\[ (x + 1, y - 9) \][/tex]
We denote this function rule using transformation notation \(T_{a, b}(x, y)\), where \(a\) is the change in the \(x\)-coordinate and \(b\) is the change in the \(y\)-coordinate. Here, \(a = 1\) and \(b = -9\).
Thus, the translation function is:
[tex]\[ T_{1, -9}(x, y) \][/tex]
Therefore, the correct function rule that describes the translation is:
[tex]\[ T_{1, -9}(x, y) \][/tex]
1. Translating Down:
- Translating a figure 9 units down affects the \(y\)-coordinate. To move a point down, we subtract 9 from the \(y\)-coordinate. Therefore, the \(y\)-coordinate of a point \((x, y)\) will become \(y - 9\).
2. Translating to the Right:
- Translating a figure 1 unit to the right affects the \(x\)-coordinate. To move a point to the right, we add 1 to the \(x\)-coordinate. Therefore, the \(x\)-coordinate of a point \((x, y)\) will become \(x + 1\).
Combining these translations, the new coordinates for any point \((x, y)\) after translating 9 units down and 1 unit to the right will be:
[tex]\[ (x + 1, y - 9) \][/tex]
We denote this function rule using transformation notation \(T_{a, b}(x, y)\), where \(a\) is the change in the \(x\)-coordinate and \(b\) is the change in the \(y\)-coordinate. Here, \(a = 1\) and \(b = -9\).
Thus, the translation function is:
[tex]\[ T_{1, -9}(x, y) \][/tex]
Therefore, the correct function rule that describes the translation is:
[tex]\[ T_{1, -9}(x, y) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.