Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's solve the expression \(\sqrt[5]{\frac{8}{125}}\) step by step.
1. Identify the components of the expression:
- The numerator is \(8\).
- The denominator is \(125\).
- We are asked to find the fifth root of the fraction.
2. Rewrite the expression:
The expression \(\sqrt[5]{\frac{8}{125}}\) can be rewritten as \(\left(\frac{8}{125}\right)^{\frac{1}{5}}\).
3. Evaluate the fraction:
We need to first consider the fraction \(\frac{8}{125}\). The fraction \(8\) (numerator) divided by \(125\) (denominator) is retained as \(\frac{8}{125}\).
4. Apply the fifth root:
The fifth root of a number \(x\) is the same as raising \(x\) to the power of \(\frac{1}{5}\). Therefore, we need to compute \(\left(\frac{8}{125}\right)^{\frac{1}{5}}\).
After performing this calculation, we find that the result is approximately:
[tex]\[ \sqrt[5]{\frac{8}{125}} \approx 0.5770799623628854 \][/tex]
Thus, [tex]\(\sqrt[5]{\frac{8}{125}}\)[/tex] evaluates to [tex]\(0.5770799623628854\)[/tex].
1. Identify the components of the expression:
- The numerator is \(8\).
- The denominator is \(125\).
- We are asked to find the fifth root of the fraction.
2. Rewrite the expression:
The expression \(\sqrt[5]{\frac{8}{125}}\) can be rewritten as \(\left(\frac{8}{125}\right)^{\frac{1}{5}}\).
3. Evaluate the fraction:
We need to first consider the fraction \(\frac{8}{125}\). The fraction \(8\) (numerator) divided by \(125\) (denominator) is retained as \(\frac{8}{125}\).
4. Apply the fifth root:
The fifth root of a number \(x\) is the same as raising \(x\) to the power of \(\frac{1}{5}\). Therefore, we need to compute \(\left(\frac{8}{125}\right)^{\frac{1}{5}}\).
After performing this calculation, we find that the result is approximately:
[tex]\[ \sqrt[5]{\frac{8}{125}} \approx 0.5770799623628854 \][/tex]
Thus, [tex]\(\sqrt[5]{\frac{8}{125}}\)[/tex] evaluates to [tex]\(0.5770799623628854\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.