Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem of calculating the amount of heat released by the combustion of 2 moles of methane (\( CH_4 \)), we need to use the given enthalpies of formation (\( \Delta H_f \)). The combustion reaction is:
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g). \][/tex]
The given enthalpies of formation are:
- \( \Delta H_f \) for \( CH_4(g) \) = -74.6 kJ/mol
- \( \Delta H_f \) for \( CO_2(g) \) = -393.5 kJ/mol
- \( \Delta H_f \) for \( H_2O(g) \) = -241.82 kJ/mol
We use the formula for the enthalpy change of the reaction:
[tex]\[ \Delta H_{reaction} = \sum\left(\Delta H_{f,\text{products}}\right) - \sum\left(\Delta H_{f,\text{reactants}}\right) \][/tex]
Step-by-Step Solution:
1. Calculate the total enthalpy of formation for the products:
In the balanced chemical equation, the products are 1 mole of \( CO_2(g) \) and 2 moles of \( H_2O(g) \).
[tex]\[ \Delta H_{f,\text{products}} = \Delta H_f \text{ (for } CO_2) + 2 \times \Delta H_f \text{ (for } H_2O) \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{f,\text{products}} = (-393.5 \, \text{kJ/mol}) + 2 \times (-241.82 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{f,\text{products}} = -393.5 \, \text{kJ/mol} - 483.64 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{f,\text{products}} = -877.14 \, \text{kJ} \][/tex]
2. Calculate the total enthalpy of formation for the reactants:
In the balanced chemical equation, the reactants are 1 mole of \( CH_4(g) \) and 2 moles of \( O_2(g) \). Since \( O_2(g) \) is in its elemental form, its enthalpy of formation is zero.
[tex]\[ \Delta H_{f,\text{reactants}} = \Delta H_f \text{ (for } CH_4) \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{f,\text{reactants}} = (-74.6 \, \text{kJ/mol}) \][/tex]
3. Calculate the enthalpy change (\( \Delta H \)) for the combustion of 1 mole of methane:
[tex]\[ \Delta H_{reaction} = \Delta H_{f,\text{products}} - \Delta H_{f,\text{reactants}} \][/tex]
Substituting the values:
[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} - (-74.6 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} + 74.6 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{reaction} = -802.54 \, \text{kJ/mol} \][/tex]
4. Calculate the heat released for the combustion of 2 moles of methane:
For 2 moles of \( CH_4 \):
[tex]\[ \text{Total heat released} = 2 \times \Delta H_{reaction} \][/tex]
Substituting the values:
[tex]\[ \text{Total heat released} = 2 \times (-802.54 \, \text{kJ/mol}) \][/tex]
[tex]\[ \text{Total heat released} = -1605.08 \, \text{kJ} \][/tex]
Thus, the correct answer is [tex]\( \boxed{-1605.1 \, \text{kJ}} \)[/tex].
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g). \][/tex]
The given enthalpies of formation are:
- \( \Delta H_f \) for \( CH_4(g) \) = -74.6 kJ/mol
- \( \Delta H_f \) for \( CO_2(g) \) = -393.5 kJ/mol
- \( \Delta H_f \) for \( H_2O(g) \) = -241.82 kJ/mol
We use the formula for the enthalpy change of the reaction:
[tex]\[ \Delta H_{reaction} = \sum\left(\Delta H_{f,\text{products}}\right) - \sum\left(\Delta H_{f,\text{reactants}}\right) \][/tex]
Step-by-Step Solution:
1. Calculate the total enthalpy of formation for the products:
In the balanced chemical equation, the products are 1 mole of \( CO_2(g) \) and 2 moles of \( H_2O(g) \).
[tex]\[ \Delta H_{f,\text{products}} = \Delta H_f \text{ (for } CO_2) + 2 \times \Delta H_f \text{ (for } H_2O) \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{f,\text{products}} = (-393.5 \, \text{kJ/mol}) + 2 \times (-241.82 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{f,\text{products}} = -393.5 \, \text{kJ/mol} - 483.64 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{f,\text{products}} = -877.14 \, \text{kJ} \][/tex]
2. Calculate the total enthalpy of formation for the reactants:
In the balanced chemical equation, the reactants are 1 mole of \( CH_4(g) \) and 2 moles of \( O_2(g) \). Since \( O_2(g) \) is in its elemental form, its enthalpy of formation is zero.
[tex]\[ \Delta H_{f,\text{reactants}} = \Delta H_f \text{ (for } CH_4) \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{f,\text{reactants}} = (-74.6 \, \text{kJ/mol}) \][/tex]
3. Calculate the enthalpy change (\( \Delta H \)) for the combustion of 1 mole of methane:
[tex]\[ \Delta H_{reaction} = \Delta H_{f,\text{products}} - \Delta H_{f,\text{reactants}} \][/tex]
Substituting the values:
[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} - (-74.6 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} + 74.6 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{reaction} = -802.54 \, \text{kJ/mol} \][/tex]
4. Calculate the heat released for the combustion of 2 moles of methane:
For 2 moles of \( CH_4 \):
[tex]\[ \text{Total heat released} = 2 \times \Delta H_{reaction} \][/tex]
Substituting the values:
[tex]\[ \text{Total heat released} = 2 \times (-802.54 \, \text{kJ/mol}) \][/tex]
[tex]\[ \text{Total heat released} = -1605.08 \, \text{kJ} \][/tex]
Thus, the correct answer is [tex]\( \boxed{-1605.1 \, \text{kJ}} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.