Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem of calculating the amount of heat released by the combustion of 2 moles of methane (\( CH_4 \)), we need to use the given enthalpies of formation (\( \Delta H_f \)). The combustion reaction is:
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g). \][/tex]
The given enthalpies of formation are:
- \( \Delta H_f \) for \( CH_4(g) \) = -74.6 kJ/mol
- \( \Delta H_f \) for \( CO_2(g) \) = -393.5 kJ/mol
- \( \Delta H_f \) for \( H_2O(g) \) = -241.82 kJ/mol
We use the formula for the enthalpy change of the reaction:
[tex]\[ \Delta H_{reaction} = \sum\left(\Delta H_{f,\text{products}}\right) - \sum\left(\Delta H_{f,\text{reactants}}\right) \][/tex]
Step-by-Step Solution:
1. Calculate the total enthalpy of formation for the products:
In the balanced chemical equation, the products are 1 mole of \( CO_2(g) \) and 2 moles of \( H_2O(g) \).
[tex]\[ \Delta H_{f,\text{products}} = \Delta H_f \text{ (for } CO_2) + 2 \times \Delta H_f \text{ (for } H_2O) \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{f,\text{products}} = (-393.5 \, \text{kJ/mol}) + 2 \times (-241.82 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{f,\text{products}} = -393.5 \, \text{kJ/mol} - 483.64 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{f,\text{products}} = -877.14 \, \text{kJ} \][/tex]
2. Calculate the total enthalpy of formation for the reactants:
In the balanced chemical equation, the reactants are 1 mole of \( CH_4(g) \) and 2 moles of \( O_2(g) \). Since \( O_2(g) \) is in its elemental form, its enthalpy of formation is zero.
[tex]\[ \Delta H_{f,\text{reactants}} = \Delta H_f \text{ (for } CH_4) \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{f,\text{reactants}} = (-74.6 \, \text{kJ/mol}) \][/tex]
3. Calculate the enthalpy change (\( \Delta H \)) for the combustion of 1 mole of methane:
[tex]\[ \Delta H_{reaction} = \Delta H_{f,\text{products}} - \Delta H_{f,\text{reactants}} \][/tex]
Substituting the values:
[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} - (-74.6 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} + 74.6 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{reaction} = -802.54 \, \text{kJ/mol} \][/tex]
4. Calculate the heat released for the combustion of 2 moles of methane:
For 2 moles of \( CH_4 \):
[tex]\[ \text{Total heat released} = 2 \times \Delta H_{reaction} \][/tex]
Substituting the values:
[tex]\[ \text{Total heat released} = 2 \times (-802.54 \, \text{kJ/mol}) \][/tex]
[tex]\[ \text{Total heat released} = -1605.08 \, \text{kJ} \][/tex]
Thus, the correct answer is [tex]\( \boxed{-1605.1 \, \text{kJ}} \)[/tex].
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g). \][/tex]
The given enthalpies of formation are:
- \( \Delta H_f \) for \( CH_4(g) \) = -74.6 kJ/mol
- \( \Delta H_f \) for \( CO_2(g) \) = -393.5 kJ/mol
- \( \Delta H_f \) for \( H_2O(g) \) = -241.82 kJ/mol
We use the formula for the enthalpy change of the reaction:
[tex]\[ \Delta H_{reaction} = \sum\left(\Delta H_{f,\text{products}}\right) - \sum\left(\Delta H_{f,\text{reactants}}\right) \][/tex]
Step-by-Step Solution:
1. Calculate the total enthalpy of formation for the products:
In the balanced chemical equation, the products are 1 mole of \( CO_2(g) \) and 2 moles of \( H_2O(g) \).
[tex]\[ \Delta H_{f,\text{products}} = \Delta H_f \text{ (for } CO_2) + 2 \times \Delta H_f \text{ (for } H_2O) \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{f,\text{products}} = (-393.5 \, \text{kJ/mol}) + 2 \times (-241.82 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{f,\text{products}} = -393.5 \, \text{kJ/mol} - 483.64 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{f,\text{products}} = -877.14 \, \text{kJ} \][/tex]
2. Calculate the total enthalpy of formation for the reactants:
In the balanced chemical equation, the reactants are 1 mole of \( CH_4(g) \) and 2 moles of \( O_2(g) \). Since \( O_2(g) \) is in its elemental form, its enthalpy of formation is zero.
[tex]\[ \Delta H_{f,\text{reactants}} = \Delta H_f \text{ (for } CH_4) \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{f,\text{reactants}} = (-74.6 \, \text{kJ/mol}) \][/tex]
3. Calculate the enthalpy change (\( \Delta H \)) for the combustion of 1 mole of methane:
[tex]\[ \Delta H_{reaction} = \Delta H_{f,\text{products}} - \Delta H_{f,\text{reactants}} \][/tex]
Substituting the values:
[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} - (-74.6 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} + 74.6 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{reaction} = -802.54 \, \text{kJ/mol} \][/tex]
4. Calculate the heat released for the combustion of 2 moles of methane:
For 2 moles of \( CH_4 \):
[tex]\[ \text{Total heat released} = 2 \times \Delta H_{reaction} \][/tex]
Substituting the values:
[tex]\[ \text{Total heat released} = 2 \times (-802.54 \, \text{kJ/mol}) \][/tex]
[tex]\[ \text{Total heat released} = -1605.08 \, \text{kJ} \][/tex]
Thus, the correct answer is [tex]\( \boxed{-1605.1 \, \text{kJ}} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.