Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

The enthalpies of formation of the compounds in the combustion of methane are:

[tex]\[
CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)
\][/tex]

Given:
- \(CH_4(g): \Delta H_f = -74.6 \, \text{kJ/mol}\)
- \(CO_2(g): \Delta H_f = -393.5 \, \text{kJ/mol}\)
- \(H_2O(g): \Delta H_f = -241.82 \, \text{kJ/mol}\)

How much heat is released by the combustion of 2 mol of methane?

Use:
[tex]\[
\Delta H_{\text{combustion}} = \sum \left(\Delta H_{f,\text{products}}\right) - \sum \left(\Delta H_{f,\text{reactants}}\right)
\][/tex]

A. \(-80.3 \, \text{kJ}\)

B. \(-802.5 \, \text{kJ}\)

C. \(-1,605.1 \, \text{kJ}\)

D. [tex]\(-6,420.3 \, \text{kJ}\)[/tex]


Sagot :

To solve the problem of calculating the amount of heat released by the combustion of 2 moles of methane (\( CH_4 \)), we need to use the given enthalpies of formation (\( \Delta H_f \)). The combustion reaction is:

[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g). \][/tex]

The given enthalpies of formation are:
- \( \Delta H_f \) for \( CH_4(g) \) = -74.6 kJ/mol
- \( \Delta H_f \) for \( CO_2(g) \) = -393.5 kJ/mol
- \( \Delta H_f \) for \( H_2O(g) \) = -241.82 kJ/mol

We use the formula for the enthalpy change of the reaction:

[tex]\[ \Delta H_{reaction} = \sum\left(\Delta H_{f,\text{products}}\right) - \sum\left(\Delta H_{f,\text{reactants}}\right) \][/tex]

Step-by-Step Solution:

1. Calculate the total enthalpy of formation for the products:

In the balanced chemical equation, the products are 1 mole of \( CO_2(g) \) and 2 moles of \( H_2O(g) \).

[tex]\[ \Delta H_{f,\text{products}} = \Delta H_f \text{ (for } CO_2) + 2 \times \Delta H_f \text{ (for } H_2O) \][/tex]

Substituting the given values:

[tex]\[ \Delta H_{f,\text{products}} = (-393.5 \, \text{kJ/mol}) + 2 \times (-241.82 \, \text{kJ/mol}) \][/tex]

[tex]\[ \Delta H_{f,\text{products}} = -393.5 \, \text{kJ/mol} - 483.64 \, \text{kJ/mol} \][/tex]

[tex]\[ \Delta H_{f,\text{products}} = -877.14 \, \text{kJ} \][/tex]

2. Calculate the total enthalpy of formation for the reactants:

In the balanced chemical equation, the reactants are 1 mole of \( CH_4(g) \) and 2 moles of \( O_2(g) \). Since \( O_2(g) \) is in its elemental form, its enthalpy of formation is zero.

[tex]\[ \Delta H_{f,\text{reactants}} = \Delta H_f \text{ (for } CH_4) \][/tex]

Substituting the given values:

[tex]\[ \Delta H_{f,\text{reactants}} = (-74.6 \, \text{kJ/mol}) \][/tex]

3. Calculate the enthalpy change (\( \Delta H \)) for the combustion of 1 mole of methane:

[tex]\[ \Delta H_{reaction} = \Delta H_{f,\text{products}} - \Delta H_{f,\text{reactants}} \][/tex]

Substituting the values:

[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} - (-74.6 \, \text{kJ}) \][/tex]

[tex]\[ \Delta H_{reaction} = -877.14 \, \text{kJ} + 74.6 \, \text{kJ} \][/tex]

[tex]\[ \Delta H_{reaction} = -802.54 \, \text{kJ/mol} \][/tex]

4. Calculate the heat released for the combustion of 2 moles of methane:

For 2 moles of \( CH_4 \):

[tex]\[ \text{Total heat released} = 2 \times \Delta H_{reaction} \][/tex]

Substituting the values:

[tex]\[ \text{Total heat released} = 2 \times (-802.54 \, \text{kJ/mol}) \][/tex]

[tex]\[ \text{Total heat released} = -1605.08 \, \text{kJ} \][/tex]

Thus, the correct answer is [tex]\( \boxed{-1605.1 \, \text{kJ}} \)[/tex].