Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex]\large\text{$48.59^\circ$}[/tex]
Explanation:
[tex]\large\text{Solution: $}[/tex]
[tex]\large\text{Minimum angle of deviation $(\delta_m)= ?$}[/tex]
[tex]\large\text{Angle of incidence$(i)$ = ?}[/tex]
[tex]\large\text{Refractive index of glass$(\mu)$ = 1.5}[/tex]
[tex]\large\text{Angle of deviation$(A)\ = \ 60^\circ$ because the prism is equilateral.}[/tex]
[tex]\large\text{Using formula,$}[/tex]
[tex]\large\text{$\dfrac{\sin i}{\sin r}=\mu$}[/tex]
[tex]\large\text{In the case of minimum deviation,$}[/tex]
[tex]\large\text{$\dfrac{\sin \bigg(\dfrac{A+\delta_m}{2}\bigg)}{\sin \bigg(\dfrac{A}{2}\bigg)}=\mu$}[/tex]
[tex]\large\text{Substitute the given values:$}[/tex]
[tex]\large\text{$\dfrac{\sin \bigg(\dfrac{60^\circ+\delta_m}{2}\bigg)}{\sin\bigg(\dfrac{60}{2}\bigg)^\circ}=1.5$}[/tex]
[tex]\large\text{$\dfrac{\sin\bigg(30^\circ+\dfrac{\delta_m}{2}\bigg)}{\sin 30^\circ}=1.5$}[/tex]
[tex]\large\text{$\sin\bigg(30^\circ+\dfrac{\delta_m}{2}\bigg)=0.75$}[/tex]
[tex]\large\text{$30^\circ+\dfrac{\delta_m}{2}=\sin^{-1}(0.75)$}[/tex]
[tex]\large\text{$\delta_m=2(\sin^{-1}(0.75)-30^\circ)$}[/tex]
[tex]\boxed{\large\text{$\delta_m=37.18^\circ$}}[/tex]
[tex]\large\text{In case of minimum deviation, we have, $}[/tex]
[tex]\large\text{Angle of incidence$(i)=\dfrac{A+\delta_m}{2}=\dfrac{60+37.18}{2}=48.59^\circ$}[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.