Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's go through the problem step-by-step to determine the test statistic and the p-value for this sample.
1. State the hypotheses:
- Null hypothesis (\(H_0\)): The proportion of voters who prefer Candidate A is \( p_0 = 0.58 \).
- Alternative hypothesis (\(H_1\)): The proportion of voters who prefer Candidate A is greater than 0.58 (\( p > 0.58 \)).
2. Given data:
- Sample size (\(n\)): 434
- Number of successes (\(k\)): 266
- Significance level (\(\alpha\)): 0.005
- Population proportion under the null hypothesis (\(p_0\)): 0.58
3. Sample proportion (\(\hat{p}\)):
[tex]\[ \hat{p} = \frac{k}{n} = \frac{266}{434} = 0.6138 \][/tex]
4. Calculate the standard error (SE) of the sample proportion:
[tex]\[ \text{SE} = \sqrt{\frac{p_0 (1 - p_0)}{n}} = \sqrt{\frac{0.58 \cdot (1 - 0.58)}{434}} = \sqrt{\frac{0.58 \cdot 0.42}{434}} = \sqrt{\frac{0.2436}{434}} = \sqrt{0.000561} \approx 0.0237 \][/tex]
5. Calculate the test statistic (z):
[tex]\[ z = \frac{\hat{p} - p_0}{\text{SE}} = \frac{0.6138 - 0.58}{0.0237} \approx \frac{0.0338}{0.0237} \approx 1.389 \][/tex]
So, the test statistic \(z\) is approximately \(1.389\).
6. Determine the p-value:
The p-value corresponds to the probability of getting a value as extreme as, or more extreme than, the observed value of the test statistic under the null hypothesis.
Since we are dealing with a right-tailed test:
[tex]\[ p\text{-value} = 1 - \Phi(z) \approx 1 - \Phi(1.389) \][/tex]
Looking up \( \Phi(1.389) \) in the standard normal distribution table (or using a calculator/software):
[tex]\[ \Phi(1.389) \approx 0.9176 \][/tex]
Hence:
[tex]\[ p\text{-value} = 1 - 0.9176 = 0.0824 \][/tex]
So, the results are:
- Test statistic \( \approx 1.389 \)
- \( p \)-value \( \approx 0.0824 \)
Therefore, the test statistic is [tex]\(1.389\)[/tex] (accurate to three decimal places) and the [tex]\( p \)[/tex]-value for this sample is [tex]\(0.0824\)[/tex] (accurate to four decimal places).
1. State the hypotheses:
- Null hypothesis (\(H_0\)): The proportion of voters who prefer Candidate A is \( p_0 = 0.58 \).
- Alternative hypothesis (\(H_1\)): The proportion of voters who prefer Candidate A is greater than 0.58 (\( p > 0.58 \)).
2. Given data:
- Sample size (\(n\)): 434
- Number of successes (\(k\)): 266
- Significance level (\(\alpha\)): 0.005
- Population proportion under the null hypothesis (\(p_0\)): 0.58
3. Sample proportion (\(\hat{p}\)):
[tex]\[ \hat{p} = \frac{k}{n} = \frac{266}{434} = 0.6138 \][/tex]
4. Calculate the standard error (SE) of the sample proportion:
[tex]\[ \text{SE} = \sqrt{\frac{p_0 (1 - p_0)}{n}} = \sqrt{\frac{0.58 \cdot (1 - 0.58)}{434}} = \sqrt{\frac{0.58 \cdot 0.42}{434}} = \sqrt{\frac{0.2436}{434}} = \sqrt{0.000561} \approx 0.0237 \][/tex]
5. Calculate the test statistic (z):
[tex]\[ z = \frac{\hat{p} - p_0}{\text{SE}} = \frac{0.6138 - 0.58}{0.0237} \approx \frac{0.0338}{0.0237} \approx 1.389 \][/tex]
So, the test statistic \(z\) is approximately \(1.389\).
6. Determine the p-value:
The p-value corresponds to the probability of getting a value as extreme as, or more extreme than, the observed value of the test statistic under the null hypothesis.
Since we are dealing with a right-tailed test:
[tex]\[ p\text{-value} = 1 - \Phi(z) \approx 1 - \Phi(1.389) \][/tex]
Looking up \( \Phi(1.389) \) in the standard normal distribution table (or using a calculator/software):
[tex]\[ \Phi(1.389) \approx 0.9176 \][/tex]
Hence:
[tex]\[ p\text{-value} = 1 - 0.9176 = 0.0824 \][/tex]
So, the results are:
- Test statistic \( \approx 1.389 \)
- \( p \)-value \( \approx 0.0824 \)
Therefore, the test statistic is [tex]\(1.389\)[/tex] (accurate to three decimal places) and the [tex]\( p \)[/tex]-value for this sample is [tex]\(0.0824\)[/tex] (accurate to four decimal places).
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.