Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's walk through a detailed, step-by-step solution for predicting the number of bacteria present after 16 hours.
### Step-by-Step Solution:
1. Identify the given information:
- Initial number of bacteria, \( P_0 \): 2000
- Number of bacteria after 6 hours, \( P_6 \): 2400
- Time interval for this growth, \( t \): 6 hours
2. Recall the exponential growth formula:
[tex]\[ P = P_0 e^{kt} \][/tex]
where:
- \( P \) is the population at time \( t \)
- \( P_0 \) is the initial population
- \( k \) is the growth rate constant
- \( t \) is the time
3. First, solve for the growth rate constant \( k \):
- At \( t = 6 \), the population \( P_6 \) is 2400.
- So, the equation becomes:
[tex]\[ 2400 = 2000 e^{6k} \][/tex]
- Divide both sides by 2000:
[tex]\[ \frac{2400}{2000} = e^{6k} \][/tex]
[tex]\[ 1.2 = e^{6k} \][/tex]
- Take the natural logarithm of both sides to solve for \( k \):
[tex]\[ \ln(1.2) = 6k \][/tex]
- So:
[tex]\[ k = \frac{\ln(1.2)}{6} \][/tex]
- Using a calculator:
[tex]\[ k \approx \frac{0.1823}{6} \approx 0.0304 \][/tex]
(rounded to four decimal places)
4. Predict the number of bacteria after 16 hours:
- Now we use the growth formula again with \( t = 16 \):
[tex]\[ P_{16} = 2000 e^{k \cdot 16} \][/tex]
- Substitute \( k \approx 0.0304 \):
[tex]\[ P_{16} = 2000 e^{0.0304 \cdot 16} \][/tex]
- Simplify the exponent:
[tex]\[ P_{16} = 2000 e^{0.4864} \][/tex]
- Using a calculator:
[tex]\[ e^{0.4864} \approx 1.6261 \][/tex]
- Thus:
[tex]\[ P_{16} \approx 2000 \times 1.6261 \approx 3252.2 \][/tex]
5. Round the result:
- The bacteria count after 16 hours, rounded to the nearest whole number, is:
[tex]\[ \boxed{3252} \][/tex]
Hence, after 16 hours, there will be approximately 3252 bacteria.
### Step-by-Step Solution:
1. Identify the given information:
- Initial number of bacteria, \( P_0 \): 2000
- Number of bacteria after 6 hours, \( P_6 \): 2400
- Time interval for this growth, \( t \): 6 hours
2. Recall the exponential growth formula:
[tex]\[ P = P_0 e^{kt} \][/tex]
where:
- \( P \) is the population at time \( t \)
- \( P_0 \) is the initial population
- \( k \) is the growth rate constant
- \( t \) is the time
3. First, solve for the growth rate constant \( k \):
- At \( t = 6 \), the population \( P_6 \) is 2400.
- So, the equation becomes:
[tex]\[ 2400 = 2000 e^{6k} \][/tex]
- Divide both sides by 2000:
[tex]\[ \frac{2400}{2000} = e^{6k} \][/tex]
[tex]\[ 1.2 = e^{6k} \][/tex]
- Take the natural logarithm of both sides to solve for \( k \):
[tex]\[ \ln(1.2) = 6k \][/tex]
- So:
[tex]\[ k = \frac{\ln(1.2)}{6} \][/tex]
- Using a calculator:
[tex]\[ k \approx \frac{0.1823}{6} \approx 0.0304 \][/tex]
(rounded to four decimal places)
4. Predict the number of bacteria after 16 hours:
- Now we use the growth formula again with \( t = 16 \):
[tex]\[ P_{16} = 2000 e^{k \cdot 16} \][/tex]
- Substitute \( k \approx 0.0304 \):
[tex]\[ P_{16} = 2000 e^{0.0304 \cdot 16} \][/tex]
- Simplify the exponent:
[tex]\[ P_{16} = 2000 e^{0.4864} \][/tex]
- Using a calculator:
[tex]\[ e^{0.4864} \approx 1.6261 \][/tex]
- Thus:
[tex]\[ P_{16} \approx 2000 \times 1.6261 \approx 3252.2 \][/tex]
5. Round the result:
- The bacteria count after 16 hours, rounded to the nearest whole number, is:
[tex]\[ \boxed{3252} \][/tex]
Hence, after 16 hours, there will be approximately 3252 bacteria.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.