Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Note: When solving for [tex]$k$[/tex], round to four decimal places.

A culture started with 6,000 bacteria. After 3 hours, it grew to 7,200 bacteria. Predict how many bacteria will be present after 19 hours. Round your answer to the nearest whole number.

The growth model is given by:

[tex]\[ P = A e^{kt} \][/tex]

Enter the correct answer.


Sagot :

To predict the number of bacteria present after 19 hours, let's follow a step-by-step solution using the given exponential growth formula:

[tex]\[ P = A e^{k t} \][/tex]

1. Initial Information:
- Initial number of bacteria (\(P_0\)) = 6,000
- Number of bacteria after 3 hours (\(P_3\)) = 7,200
- Time elapsed to reach 7,200 bacteria (\(t_3\)) = 3 hours
- Time after which we need to predict the number of bacteria (\(t_{19}\)) = 19 hours

2. Determine the growth rate constant \(k\):
Using the formula \(P = A e^{k t}\):
[tex]\[ P_3 = P_0 e^{k t_3} \][/tex]
Substitute \(P_3\), \(P_0\), and \(t_3\):
[tex]\[ 7200 = 6000 e^{3k} \][/tex]
Solve for \(e^{3k}\):
[tex]\[ e^{3k} = \frac{7200}{6000} \][/tex]
[tex]\[ e^{3k} = 1.2 \][/tex]
Take the natural logarithm on both sides to solve for \(3k\):
[tex]\[ 3k = \ln(1.2) \][/tex]
Divide by 3 to isolate \(k\):
[tex]\[ k = \frac{\ln(1.2)}{3} \][/tex]
Calculate \(k\) and round to four decimal places:
[tex]\[ k \approx 0.0608 \][/tex]

3. Predict the number of bacteria after 19 hours:
Using the formula again \(P = A e^{k t}\):
[tex]\[ P_{19} = P_0 e^{k t_{19}} \][/tex]
Substitute \(P_0\), \(k\), and \(t_{19}\):
[tex]\[ P_{19} = 6000 e^{0.0608 \times 19} \][/tex]
Compute the exponent:
[tex]\[ 0.0608 \times 19 = 1.1552 \][/tex]
Then:
[tex]\[ P_{19} = 6000 e^{1.1552} \][/tex]
Calculate \(e^{1.1552}\):
[tex]\[ e^{1.1552} \approx 3.1731 \][/tex]
Finally, calculate \(P_{19}\):
[tex]\[ P_{19} = 6000 \times 3.1731 \approx 19038.4889 \][/tex]

4. Round the answer to the nearest whole number:
[tex]\[ P_{19} \approx 19,038 \][/tex]

Therefore, after 19 hours, there will be approximately 19,038 bacteria present in the culture.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.