Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which transformation corresponds to the rule \((x, y) \rightarrow (x, y)\), we should consider what this transformation represents geometrically.
1. Understanding the Transformation:
- The rule \((x, y) \rightarrow (x, y)\) indicates that the coordinates of each point remain unchanged after the transformation.
- This means that after applying the transformation, each point in the parallelogram stays exactly where it originally was.
2. Interpreting the Identity Transformation:
- When a point \((x, y)\) does not change its position, this implies that no actual transformation has occurred, or if a transformation has occurred, it effectively leaves every point in its original position.
- The only rotation that leaves every point in its original position occurs when the rotation completes a full circle, which amounts to \(360^\circ\).
3. Rotation Notation:
- We commonly denote rotations around the origin with \(R_{0, \theta}\), where \(\theta\) is the angle of rotation.
- Therefore, a rotation that leaves the points unchanged would be a \(360^\circ\) rotation, written as \(R_{0, 360^\circ}\).
4. Comparing Options:
- \(R_{0, 90^\circ}\): This rotates points by 90 degrees counterclockwise, changing their positions.
- \(R_{0, 180^\circ}\): This rotates points by 180 degrees, also changing their positions.
- \(R_{0, 270^\circ}\): This rotates points by 270 degrees counterclockwise, changing their positions.
- \(R_{0, 360^\circ}\): This rotates points by 360 degrees, returning them to their original positions.
Given the options, the correct transformation that describes the rule \((x, y) \rightarrow (x, y)\) is indeed the rotation by \(360\) degrees.
Thus, the correct answer is:
[tex]\[ R_{0, 360^\circ} \][/tex]
1. Understanding the Transformation:
- The rule \((x, y) \rightarrow (x, y)\) indicates that the coordinates of each point remain unchanged after the transformation.
- This means that after applying the transformation, each point in the parallelogram stays exactly where it originally was.
2. Interpreting the Identity Transformation:
- When a point \((x, y)\) does not change its position, this implies that no actual transformation has occurred, or if a transformation has occurred, it effectively leaves every point in its original position.
- The only rotation that leaves every point in its original position occurs when the rotation completes a full circle, which amounts to \(360^\circ\).
3. Rotation Notation:
- We commonly denote rotations around the origin with \(R_{0, \theta}\), where \(\theta\) is the angle of rotation.
- Therefore, a rotation that leaves the points unchanged would be a \(360^\circ\) rotation, written as \(R_{0, 360^\circ}\).
4. Comparing Options:
- \(R_{0, 90^\circ}\): This rotates points by 90 degrees counterclockwise, changing their positions.
- \(R_{0, 180^\circ}\): This rotates points by 180 degrees, also changing their positions.
- \(R_{0, 270^\circ}\): This rotates points by 270 degrees counterclockwise, changing their positions.
- \(R_{0, 360^\circ}\): This rotates points by 360 degrees, returning them to their original positions.
Given the options, the correct transformation that describes the rule \((x, y) \rightarrow (x, y)\) is indeed the rotation by \(360\) degrees.
Thus, the correct answer is:
[tex]\[ R_{0, 360^\circ} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.