At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation \( 8^x = 26 \) for \( x \), we will use logarithms and the change-of-base theorem. Let's go through the solution step by step.
1. Logarithmic Form:
The solution \( x \) is the power to which 8 must be raised to get 26. In logarithmic form, we express this as:
[tex]\[ x = \log_8 26 \][/tex]
So the first form of the solution is:
[tex]\[ \log_8 26 \][/tex]
2. Using the Common Logarithm (base 10) and the Change-of-Base Theorem:
The change-of-base theorem states that for any positive numbers \( a \), \( b \), and \( c \) (with \( a \neq 1 \) and \( b \neq 1 \)):
[tex]\[ \log_b a = \frac{\log_c a}{\log_c b} \][/tex]
Using this theorem with common logarithms (base 10), we get:
[tex]\[ x = \frac{\log 26}{\log 8} \][/tex]
So the second form of the solution is:
[tex]\[ \frac{\log 26}{\log 8} \][/tex]
3. Using the Natural Logarithm (base \( e \)):
Similarly, we can use the natural logarithm (base \( e \)) as well:
[tex]\[ x = \frac{\ln 26}{\ln 8} \][/tex]
So the third form of the solution is:
[tex]\[ \frac{\ln 26}{\ln 8} \][/tex]
Therefore, the exact solutions for \( x \) in the equation \( 8^x = 26 \) can be written in three forms:
1. \(\log_8 26\)
2. \(\frac{\log 26}{\log 8}\)
3. \(\frac{\ln 26}{\ln 8}\)
These represent the three equivalent ways to express the solution.
1. Logarithmic Form:
The solution \( x \) is the power to which 8 must be raised to get 26. In logarithmic form, we express this as:
[tex]\[ x = \log_8 26 \][/tex]
So the first form of the solution is:
[tex]\[ \log_8 26 \][/tex]
2. Using the Common Logarithm (base 10) and the Change-of-Base Theorem:
The change-of-base theorem states that for any positive numbers \( a \), \( b \), and \( c \) (with \( a \neq 1 \) and \( b \neq 1 \)):
[tex]\[ \log_b a = \frac{\log_c a}{\log_c b} \][/tex]
Using this theorem with common logarithms (base 10), we get:
[tex]\[ x = \frac{\log 26}{\log 8} \][/tex]
So the second form of the solution is:
[tex]\[ \frac{\log 26}{\log 8} \][/tex]
3. Using the Natural Logarithm (base \( e \)):
Similarly, we can use the natural logarithm (base \( e \)) as well:
[tex]\[ x = \frac{\ln 26}{\ln 8} \][/tex]
So the third form of the solution is:
[tex]\[ \frac{\ln 26}{\ln 8} \][/tex]
Therefore, the exact solutions for \( x \) in the equation \( 8^x = 26 \) can be written in three forms:
1. \(\log_8 26\)
2. \(\frac{\log 26}{\log 8}\)
3. \(\frac{\ln 26}{\ln 8}\)
These represent the three equivalent ways to express the solution.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.