Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the value of \( a \) in the equation of the quadratic function, follow these steps:
1. Identify the form of the quadratic function:
The zeros of the quadratic function are given as \( -8 \) and \( 4 \). We can start with the form:
[tex]\[ f(x) = a(x + 8)(x - 4) \][/tex]
where \( a \) is a constant that we need to determine.
2. Determine the vertex:
A vertex is a key feature of a parabola formed by a quadratic function. Given that the maximum point is \( (-2, 18) \), we know the vertex \( (-2, 18) \) lies on the graph of the quadratic function.
3. Substitute the vertex coordinates:
Substitute \( x = -2 \) and \( f(x) = 18 \) into the function to solve for \( a \).
[tex]\[ f(-2) = a((-2) + 8)((-2) - 4) = 18 \][/tex]
4. Simplify the equation:
Calculate the values inside the parentheses first:
[tex]\[ f(-2) = a(6)(-6) = 18 \][/tex]
Simplifying further,
[tex]\[ a \cdot 6 \cdot (-6) = 18 \][/tex]
[tex]\[ -36a = 18 \][/tex]
5. Solve for \( a \):
Isolate \( a \) by dividing both sides of the equation by \(-36\):
[tex]\[ a = \frac{18}{-36} = -\frac{1}{2} \][/tex]
Hence, the value of \( a \) in the quadratic function's equation is:
[tex]\[ \boxed{-\frac{1}{2}} \][/tex]
1. Identify the form of the quadratic function:
The zeros of the quadratic function are given as \( -8 \) and \( 4 \). We can start with the form:
[tex]\[ f(x) = a(x + 8)(x - 4) \][/tex]
where \( a \) is a constant that we need to determine.
2. Determine the vertex:
A vertex is a key feature of a parabola formed by a quadratic function. Given that the maximum point is \( (-2, 18) \), we know the vertex \( (-2, 18) \) lies on the graph of the quadratic function.
3. Substitute the vertex coordinates:
Substitute \( x = -2 \) and \( f(x) = 18 \) into the function to solve for \( a \).
[tex]\[ f(-2) = a((-2) + 8)((-2) - 4) = 18 \][/tex]
4. Simplify the equation:
Calculate the values inside the parentheses first:
[tex]\[ f(-2) = a(6)(-6) = 18 \][/tex]
Simplifying further,
[tex]\[ a \cdot 6 \cdot (-6) = 18 \][/tex]
[tex]\[ -36a = 18 \][/tex]
5. Solve for \( a \):
Isolate \( a \) by dividing both sides of the equation by \(-36\):
[tex]\[ a = \frac{18}{-36} = -\frac{1}{2} \][/tex]
Hence, the value of \( a \) in the quadratic function's equation is:
[tex]\[ \boxed{-\frac{1}{2}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.