Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the amount of money in the account at the end of 6 years when $2000 is deposited at an interest rate of 3%, compounded quarterly, we use the compound interest formula:
[tex]\[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \][/tex]
Where:
- \(P\) is the principal amount (the initial amount of money), which is $2000.
- \(r\) is the annual interest rate (as a decimal), which is 0.03 (since 3% = 0.03).
- \(n\) is the number of times the interest is compounded per year, which is 4 (since it is compounded quarterly).
- \(t\) is the time the money is invested for, in years, which is 6 years.
Now let's plug these values into the formula step-by-step.
1. Determine the value of \( \frac{r}{n} \):
[tex]\[ \frac{r}{n} = \frac{0.03}{4} = 0.0075 \][/tex]
2. Calculate \( n \times t \):
[tex]\[ n \times t = 4 \times 6 = 24 \][/tex]
3. Substitute these values into the compound interest formula:
[tex]\[ A = 2000 \left( 1 + 0.0075 \right)^{24} \][/tex]
4. Simplify inside the parentheses:
[tex]\[ A = 2000 \left( 1.0075 \right)^{24} \][/tex]
5. Compute \( \left( 1.0075 \right)^{24} \):
[tex]\[ 1.0075^{24} \approx 1.1964159 \][/tex]
6. Finally, multiply this value by the principal amount:
[tex]\[ A = 2000 \times 1.1964159 \][/tex]
[tex]\[ A \approx 2392.83 \][/tex]
So, the amount in the account after 6 years will be approximately \$2392.83.
[tex]\[ \boxed{2392.83} \][/tex]
[tex]\[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \][/tex]
Where:
- \(P\) is the principal amount (the initial amount of money), which is $2000.
- \(r\) is the annual interest rate (as a decimal), which is 0.03 (since 3% = 0.03).
- \(n\) is the number of times the interest is compounded per year, which is 4 (since it is compounded quarterly).
- \(t\) is the time the money is invested for, in years, which is 6 years.
Now let's plug these values into the formula step-by-step.
1. Determine the value of \( \frac{r}{n} \):
[tex]\[ \frac{r}{n} = \frac{0.03}{4} = 0.0075 \][/tex]
2. Calculate \( n \times t \):
[tex]\[ n \times t = 4 \times 6 = 24 \][/tex]
3. Substitute these values into the compound interest formula:
[tex]\[ A = 2000 \left( 1 + 0.0075 \right)^{24} \][/tex]
4. Simplify inside the parentheses:
[tex]\[ A = 2000 \left( 1.0075 \right)^{24} \][/tex]
5. Compute \( \left( 1.0075 \right)^{24} \):
[tex]\[ 1.0075^{24} \approx 1.1964159 \][/tex]
6. Finally, multiply this value by the principal amount:
[tex]\[ A = 2000 \times 1.1964159 \][/tex]
[tex]\[ A \approx 2392.83 \][/tex]
So, the amount in the account after 6 years will be approximately \$2392.83.
[tex]\[ \boxed{2392.83} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.