At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the series given by
[tex]\[ S_n = \sum_{i=1}^n \frac{1}{i(i+1)} \][/tex]
we can simplify the terms inside the summation.
First, let's rewrite each term in the series. Notice that:
[tex]\[ \frac{1}{i(i+1)} \][/tex]
can be decomposed into partial fractions:
[tex]\[ \frac{1}{i(i+1)} = \frac{A}{i} + \frac{B}{i+1} \][/tex]
To find the constants \(A\) and \(B\), we solve the equation:
[tex]\[ \frac{1}{i(i+1)} = \frac{A}{i} + \frac{B}{i+1} \][/tex]
Multiplying both sides by \( i(i+1) \) gives:
[tex]\[ 1 = A(i+1) + Bi \][/tex]
Simplifying, we get:
[tex]\[ 1 = Ai + A + Bi \][/tex]
[tex]\[ 1 = (A + B)i + A \][/tex]
To satisfy this equation for all \(i\), the coefficients of \(i\) and the constant term must match on both sides. Thus, we have:
[tex]\[ A + B = 0 \][/tex]
[tex]\[ A = 1 \][/tex]
Solving these simultaneously, we get \(A = 1\) and \(B = -1\):
[tex]\[ \frac{1}{i(i+1)} = \frac{1}{i} - \frac{1}{i+1} \][/tex]
So, each term in the series can be rewritten as:
[tex]\[ S_n = \sum_{i=1}^n \left( \frac{1}{i} - \frac{1}{i+1} \right) \][/tex]
This series is telescoping, meaning many terms will cancel out:
Writing out the sum explicitly for the first few terms:
[tex]\[ S_n = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \cdots + \left( \frac{1}{n} - \frac{1}{n+1} \right) \][/tex]
We notice that most terms cancel out, leaving only:
[tex]\[ S_n = 1 - \frac{1}{n+1} \][/tex]
Thus, the nth partial sum of the series is:
[tex]\[ S_n = 1 - \frac{1}{n+1} \][/tex]
Substituting \(n = 10\):
[tex]\[ S_{10} = 1 - \frac{1}{11} \][/tex]
[tex]\[ S_{10} = 1 - 0.0909090909090909 \][/tex]
[tex]\[ S_{10} = 0.9090909090909091 \][/tex]
Therefore, the sum of the series
[tex]\[ 1 + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} \][/tex]
for [tex]\( n = 10 \)[/tex] is approximately [tex]\( 0.9090909090909091 \)[/tex].
[tex]\[ S_n = \sum_{i=1}^n \frac{1}{i(i+1)} \][/tex]
we can simplify the terms inside the summation.
First, let's rewrite each term in the series. Notice that:
[tex]\[ \frac{1}{i(i+1)} \][/tex]
can be decomposed into partial fractions:
[tex]\[ \frac{1}{i(i+1)} = \frac{A}{i} + \frac{B}{i+1} \][/tex]
To find the constants \(A\) and \(B\), we solve the equation:
[tex]\[ \frac{1}{i(i+1)} = \frac{A}{i} + \frac{B}{i+1} \][/tex]
Multiplying both sides by \( i(i+1) \) gives:
[tex]\[ 1 = A(i+1) + Bi \][/tex]
Simplifying, we get:
[tex]\[ 1 = Ai + A + Bi \][/tex]
[tex]\[ 1 = (A + B)i + A \][/tex]
To satisfy this equation for all \(i\), the coefficients of \(i\) and the constant term must match on both sides. Thus, we have:
[tex]\[ A + B = 0 \][/tex]
[tex]\[ A = 1 \][/tex]
Solving these simultaneously, we get \(A = 1\) and \(B = -1\):
[tex]\[ \frac{1}{i(i+1)} = \frac{1}{i} - \frac{1}{i+1} \][/tex]
So, each term in the series can be rewritten as:
[tex]\[ S_n = \sum_{i=1}^n \left( \frac{1}{i} - \frac{1}{i+1} \right) \][/tex]
This series is telescoping, meaning many terms will cancel out:
Writing out the sum explicitly for the first few terms:
[tex]\[ S_n = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \cdots + \left( \frac{1}{n} - \frac{1}{n+1} \right) \][/tex]
We notice that most terms cancel out, leaving only:
[tex]\[ S_n = 1 - \frac{1}{n+1} \][/tex]
Thus, the nth partial sum of the series is:
[tex]\[ S_n = 1 - \frac{1}{n+1} \][/tex]
Substituting \(n = 10\):
[tex]\[ S_{10} = 1 - \frac{1}{11} \][/tex]
[tex]\[ S_{10} = 1 - 0.0909090909090909 \][/tex]
[tex]\[ S_{10} = 0.9090909090909091 \][/tex]
Therefore, the sum of the series
[tex]\[ 1 + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} \][/tex]
for [tex]\( n = 10 \)[/tex] is approximately [tex]\( 0.9090909090909091 \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.