Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Which of the following graphs could be the graph of the function [tex]f(x)=0.03 x^2(x^2-25)[/tex]?

Sagot :

To determine the graph of the function \( f(x) = 0.03 x^2(x^2 - 25) \), let's go through a detailed, step-by-step analysis.

1. Simplifying the Function:
First, we simplify the function:
[tex]\[ f(x) = 0.03 x^2 (x^2 - 25) = 0.03 (x^4 - 25x^2) \][/tex]
So,
[tex]\[ f(x) = 0.03 x^4 - 0.75 x^2 \][/tex]

2. Finding Critical Points:
To find the critical points, we need to find where the first derivative, \( f'(x) \), is equal to zero.

[tex]\[ f'(x) = 0.12 x^3 - 1.5 x \][/tex]

Setting \( f'(x) = 0 \):

[tex]\[ 0.12 x^3 - 1.5 x = 0 \][/tex]
Factor out \( x \):

[tex]\[ x (0.12 x^2 - 1.5) = 0 \][/tex]

Setting each factor to zero gives us:

[tex]\[ x = 0 \quad \text{or} \quad 0.12 x^2 - 1.5 = 0 \][/tex]

Solving \( 0.12 x^2 - 1.5 = 0 \):

[tex]\[ 0.12 x^2 = 1.5 \][/tex]
[tex]\[ x^2 = \frac{1.5}{0.12} = 12.5 \][/tex]
[tex]\[ x = \pm \sqrt{12.5} = \pm \sqrt{25 \cdot 0.5} = \pm 5\sqrt{0.5} \approx \pm 3.536 \][/tex]

Therefore, the critical points are:
[tex]\[ x = -3.536, 0, 3.536 \][/tex]

3. Second Derivative Test:
To determine the concavity at these critical points, we evaluate the second derivative \( f''(x) \):

[tex]\[ f''(x) = 0.36 x^2 - 1.5 \][/tex]

Evaluating \( f''(x) \) at the critical points:

- At \( x = -3.536 \):

[tex]\[ f''(-3.536) = 0.36 (-3.536)^2 - 1.5 \approx 3 \][/tex]

- At \( x = 0 \):

[tex]\[ f''(0) = 0.36 (0)^2 - 1.5 = -1.5 \][/tex]

- At \( x = 3.536 \):

[tex]\[ f''(3.536) = 0.36 (3.536)^2 - 1.5 \approx 3 \][/tex]

So, the concavities are:
[tex]\[ f''(-3.536) \approx 3 \quad (\text{concave up}) \][/tex]
[tex]\[ f''(0) = -1.5 \quad (\text{concave down}) \][/tex]
[tex]\[ f''(3.536) \approx 3 \quad (\text{concave up}) \][/tex]

4. Function Values at Critical Points:
We now find the function values at specific points including the critical points:

- At \( x = 0 \):

[tex]\[ f(0) = 0.03 (0)^4 - 0.75 (0)^2 = 0 \][/tex]

- At \( x = 5 \):

[tex]\[ f(5) = 0.03 (5)^4 - 0.75 (5)^2 = 0.03 \cdot 625 - 0.75 \cdot 25 = 18.75 - 18.75 = 0 \][/tex]

- At \( x = -5 \):

[tex]\[ f(-5) = 0.03 (-5)^4 - 0.75 (-5)^2 = 0.03 \cdot 625 - 0.75 \cdot 25 = 18.75 - 18.75 = 0 \][/tex]

5. Signature of the Graph:
From the above analysis, we can conclude the following:
- The function \( f(x) = 0.03 x^4 - 0.75 x^2 \) has zeros at \( x = 0, x = 5, \) and \( x = -5 \).
- The critical points are at \( x \approx -3.536, 0, 3.536 \).
- The function is concave up at \( x \approx \pm 3.536 \) and concave down at \( x = 0 \).

This gives the signature of a quartic polynomial with specific symmetry and concavity properties.

Based on these details, we should look for a graph that passes through the origin and the points [tex]\( x = \pm 5 \)[/tex], has local minima near [tex]\( x \approx \pm 3.536 \)[/tex], and shows a local maximum at the origin [tex]\( x = 0 \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.