At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which of the given sets of numbers is NOT a Pythagorean triple, we need to check if each set satisfies the Pythagorean theorem. The Pythagorean theorem states that for a set of three positive integers \(a, b, c\) (where \(a \leq b \leq c\)), the set is a Pythagorean triple if and only if:
[tex]\[a^2 + b^2 = c^2\][/tex]
Let's examine each set step-by-step:
1. Set A: \(2, 3, 4\)
- Let's assign \(a = 2\), \(b = 3\), and \(c = 4\).
- Calculate \(a^2 + b^2: 2^2 + 3^2 = 4 + 9 = 13\).
- Calculate \(c^2: 4^2 = 16\).
- Check if \(a^2 + b^2 = c^2: 13 \neq 16\).
- Conclusion: Set A (\(2, 3, 4\)) is NOT a Pythagorean triple.
2. Set B: \(3, 4, 5\)
- Let's assign \(a = 3\), \(b = 4\), and \(c = 5\).
- Calculate \(a^2 + b^2: 3^2 + 4^2 = 9 + 16 = 25\).
- Calculate \(c^2: 5^2 = 25\).
- Check if \(a^2 + b^2 = c^2: 25 = 25\).
- Conclusion: Set B (\(3, 4, 5\)) is a Pythagorean triple.
3. Set C: \(6, 8, 10\)
- Let's assign \(a = 6\), \(b = 8\), and \(c = 10\).
- Calculate \(a^2 + b^2: 6^2 + 8^2 = 36 + 64 = 100\).
- Calculate \(c^2: 10^2 = 100\).
- Check if \(a^2 + b^2 = c^2: 100 = 100\).
- Conclusion: Set C (\(6, 8, 10\)) is a Pythagorean triple.
4. Set D: \(5, 12, 13\)
- Let's assign \(a = 5\), \(b = 12\), and \(c = 13\).
- Calculate \(a^2 + b^2: 5^2 + 12^2 = 25 + 144 = 169\).
- Calculate \(c^2: 13^2 = 169\).
- Check if \(a^2 + b^2 = c^2: 169 = 169\).
- Conclusion: Set D (\(5, 12, 13\)) is a Pythagorean triple.
After evaluating each set, we find that the set of numbers \(2, 3, 4\) does not satisfy the Pythagorean theorem.
Therefore, the answer is:
A. [tex]\(2, 3, 4\)[/tex]
[tex]\[a^2 + b^2 = c^2\][/tex]
Let's examine each set step-by-step:
1. Set A: \(2, 3, 4\)
- Let's assign \(a = 2\), \(b = 3\), and \(c = 4\).
- Calculate \(a^2 + b^2: 2^2 + 3^2 = 4 + 9 = 13\).
- Calculate \(c^2: 4^2 = 16\).
- Check if \(a^2 + b^2 = c^2: 13 \neq 16\).
- Conclusion: Set A (\(2, 3, 4\)) is NOT a Pythagorean triple.
2. Set B: \(3, 4, 5\)
- Let's assign \(a = 3\), \(b = 4\), and \(c = 5\).
- Calculate \(a^2 + b^2: 3^2 + 4^2 = 9 + 16 = 25\).
- Calculate \(c^2: 5^2 = 25\).
- Check if \(a^2 + b^2 = c^2: 25 = 25\).
- Conclusion: Set B (\(3, 4, 5\)) is a Pythagorean triple.
3. Set C: \(6, 8, 10\)
- Let's assign \(a = 6\), \(b = 8\), and \(c = 10\).
- Calculate \(a^2 + b^2: 6^2 + 8^2 = 36 + 64 = 100\).
- Calculate \(c^2: 10^2 = 100\).
- Check if \(a^2 + b^2 = c^2: 100 = 100\).
- Conclusion: Set C (\(6, 8, 10\)) is a Pythagorean triple.
4. Set D: \(5, 12, 13\)
- Let's assign \(a = 5\), \(b = 12\), and \(c = 13\).
- Calculate \(a^2 + b^2: 5^2 + 12^2 = 25 + 144 = 169\).
- Calculate \(c^2: 13^2 = 169\).
- Check if \(a^2 + b^2 = c^2: 169 = 169\).
- Conclusion: Set D (\(5, 12, 13\)) is a Pythagorean triple.
After evaluating each set, we find that the set of numbers \(2, 3, 4\) does not satisfy the Pythagorean theorem.
Therefore, the answer is:
A. [tex]\(2, 3, 4\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.