Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's start by finding the [tex]$x$[/tex]-intercept and [tex]$y$[/tex]-intercept for the given line with the equation [tex]$-3x + 6y = 12$[/tex].
### Finding the [tex]$y$[/tex]-Intercept
1. To find the [tex]$y$[/tex]-intercept, set [tex]$x$[/tex] to [tex]$0$[/tex] in the given equation and solve for [tex]$y$[/tex].
2. Substituting [tex]$x = 0$[/tex] into the equation [tex]$-3x + 6y = 12$[/tex]:
[tex]\[ -3(0) + 6y = 12 \][/tex]
[tex]\[ 6y = 12 \][/tex]
[tex]\[ y = \frac{12}{6} = 2 \][/tex]
3. Therefore, the [tex]$y$[/tex]-intercept is [tex]$(0, 2)$[/tex].
### Finding the [tex]$x$[/tex]-Intercept
1. To find the [tex]$x$[/tex]-intercept, set [tex]$y$[/tex] to [tex]$0$[/tex] in the given equation and solve for [tex]$x$[/tex].
2. Substituting [tex]$y = 0$[/tex] into the equation [tex]$-3x + 6y = 12$[/tex]:
[tex]\[ -3x + 6(0) = 12 \][/tex]
[tex]\[ -3x = 12 \][/tex]
[tex]\[ x = \frac{12}{-3} = -4 \][/tex]
3. Therefore, the [tex]$x$[/tex]-intercept is [tex]$(-4, 0)$[/tex].
### Plotting the Points and Graphing the Line
1. Plot the [tex]$y$[/tex]-intercept [tex]$(0, 2)$[/tex] on the graph. This is the point where the line crosses the [tex]$y$[/tex]-axis.
2. Plot the [tex]$x$[/tex]-intercept [tex]$(-4, 0)$[/tex] on the graph. This is the point where the line crosses the [tex]$x$[/tex]-axis.
3. Use a ruler or a straight edge to draw a line through these two points. This line represents the equation [tex]$-3x + 6y = 12$[/tex].
By following these steps, you now have the [tex]$x$[/tex]-intercept and [tex]$y$[/tex]-intercept and you can accurately graph the line on a coordinate plane.
### Finding the [tex]$y$[/tex]-Intercept
1. To find the [tex]$y$[/tex]-intercept, set [tex]$x$[/tex] to [tex]$0$[/tex] in the given equation and solve for [tex]$y$[/tex].
2. Substituting [tex]$x = 0$[/tex] into the equation [tex]$-3x + 6y = 12$[/tex]:
[tex]\[ -3(0) + 6y = 12 \][/tex]
[tex]\[ 6y = 12 \][/tex]
[tex]\[ y = \frac{12}{6} = 2 \][/tex]
3. Therefore, the [tex]$y$[/tex]-intercept is [tex]$(0, 2)$[/tex].
### Finding the [tex]$x$[/tex]-Intercept
1. To find the [tex]$x$[/tex]-intercept, set [tex]$y$[/tex] to [tex]$0$[/tex] in the given equation and solve for [tex]$x$[/tex].
2. Substituting [tex]$y = 0$[/tex] into the equation [tex]$-3x + 6y = 12$[/tex]:
[tex]\[ -3x + 6(0) = 12 \][/tex]
[tex]\[ -3x = 12 \][/tex]
[tex]\[ x = \frac{12}{-3} = -4 \][/tex]
3. Therefore, the [tex]$x$[/tex]-intercept is [tex]$(-4, 0)$[/tex].
### Plotting the Points and Graphing the Line
1. Plot the [tex]$y$[/tex]-intercept [tex]$(0, 2)$[/tex] on the graph. This is the point where the line crosses the [tex]$y$[/tex]-axis.
2. Plot the [tex]$x$[/tex]-intercept [tex]$(-4, 0)$[/tex] on the graph. This is the point where the line crosses the [tex]$x$[/tex]-axis.
3. Use a ruler or a straight edge to draw a line through these two points. This line represents the equation [tex]$-3x + 6y = 12$[/tex].
By following these steps, you now have the [tex]$x$[/tex]-intercept and [tex]$y$[/tex]-intercept and you can accurately graph the line on a coordinate plane.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.