Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the given problem, we will start by marking the appropriate relational operators (\(<\) or \(>\)) where necessary.
Let's go through the given numbers step-by-step and place the correct relational operators:
1. \(1.8 < 2.8\) (This is correct as it is).
2. \(4.3 > 4.124\):
- 4.3 can be thought of as 4.300 which is greater than 4.124.
3. \(0.005 < 0.04\):
- \(0.005\) is directly less than \(0.04\) (also 0.040).
4. \(70.5 < 71.524\):
- \(70.5\) can be viewed as \(70.500\) which is less than \(71.524\).
5. \(2.999 < 3\):
- Numerically, \(2.999\) is less than \(3\).
6. \(8.01 < 8.10\):
- \(8.01\) can be seen as \(8.010\), and \(8.010\) is less than \(8.100\).
7. \(0.006 < 0.04\):
- \(0.006\) is directly less than \(0.04\) (also 0.040).
Since we need to insert a symbol \(\square\) next to \(0.006\), and the only remaining comparison is \(0.006\) versus \(0.040\):
\(\square \longdiv {0,040}\)
After comparing the numbers, the complete relational statements should look like this:
[tex]\[ \begin{array}{l} 1.8 < 2.8 \\ 4.3 > 4.124 \\ 0.005 < 0.04 \\ 70.5 < 71.524 \\ 2.999 < 3 \\ 8.01 < 8.10 \\ 0.006 \square 0.04 \\ \end{array} \][/tex]
Let's go through the given numbers step-by-step and place the correct relational operators:
1. \(1.8 < 2.8\) (This is correct as it is).
2. \(4.3 > 4.124\):
- 4.3 can be thought of as 4.300 which is greater than 4.124.
3. \(0.005 < 0.04\):
- \(0.005\) is directly less than \(0.04\) (also 0.040).
4. \(70.5 < 71.524\):
- \(70.5\) can be viewed as \(70.500\) which is less than \(71.524\).
5. \(2.999 < 3\):
- Numerically, \(2.999\) is less than \(3\).
6. \(8.01 < 8.10\):
- \(8.01\) can be seen as \(8.010\), and \(8.010\) is less than \(8.100\).
7. \(0.006 < 0.04\):
- \(0.006\) is directly less than \(0.04\) (also 0.040).
Since we need to insert a symbol \(\square\) next to \(0.006\), and the only remaining comparison is \(0.006\) versus \(0.040\):
\(\square \longdiv {0,040}\)
After comparing the numbers, the complete relational statements should look like this:
[tex]\[ \begin{array}{l} 1.8 < 2.8 \\ 4.3 > 4.124 \\ 0.005 < 0.04 \\ 70.5 < 71.524 \\ 2.999 < 3 \\ 8.01 < 8.10 \\ 0.006 \square 0.04 \\ \end{array} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.