Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find which expression is equivalent to \(\left(\frac{4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}}}{4^{\frac{1}{2}}}\right)^{\frac{1}{2}}\), let's break it down step-by-step.
1. Combine the exponents in the numerator:
[tex]\[ 4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}} = 4^{\left(\frac{5}{4} + \frac{1}{4}\right)} = 4^{\frac{6}{4}} = 4^{\frac{3}{2}} \][/tex]
So our expression now is:
[tex]\[ \left(\frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}}\right)^{\frac{1}{2}} \][/tex]
2. Simplify the division of the bases with exponents:
[tex]\[ \frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}} = 4^{\left(\frac{3}{2} - \frac{1}{2}\right)} = 4^{\frac{2}{2}} = 4^1 = 4 \][/tex]
Now our expression simplifies to:
[tex]\[ \left(4\right)^{\frac{1}{2}} \][/tex]
3. Take the square root of the result:
[tex]\[ \left(4\right)^{\frac{1}{2}} = \sqrt{4} = 2 \][/tex]
Thus, the equivalent expression is:
[tex]\[ 2 \][/tex]
So the correct answer is:
[tex]\[ \boxed{2} \][/tex]
1. Combine the exponents in the numerator:
[tex]\[ 4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}} = 4^{\left(\frac{5}{4} + \frac{1}{4}\right)} = 4^{\frac{6}{4}} = 4^{\frac{3}{2}} \][/tex]
So our expression now is:
[tex]\[ \left(\frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}}\right)^{\frac{1}{2}} \][/tex]
2. Simplify the division of the bases with exponents:
[tex]\[ \frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}} = 4^{\left(\frac{3}{2} - \frac{1}{2}\right)} = 4^{\frac{2}{2}} = 4^1 = 4 \][/tex]
Now our expression simplifies to:
[tex]\[ \left(4\right)^{\frac{1}{2}} \][/tex]
3. Take the square root of the result:
[tex]\[ \left(4\right)^{\frac{1}{2}} = \sqrt{4} = 2 \][/tex]
Thus, the equivalent expression is:
[tex]\[ 2 \][/tex]
So the correct answer is:
[tex]\[ \boxed{2} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.