Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which expression is equivalent to \( x^{-\frac{5}{3}} \), we need to simplify this expression step-by-step.
1. Understanding Negative Exponents:
[tex]\[ x^{-\frac{5}{3}} = \frac{1}{x^{\frac{5}{3}}} \][/tex]
A negative exponent indicates that we take the reciprocal of the base with the positive of that exponent.
2. Converting \( x^{\frac{5}{3}} \) to Radical Form:
We can express \( x^{\frac{5}{3}} \) using roots.
[tex]\[ x^{\frac{5}{3}} = (x^5)^{\frac{1}{3}} = \sqrt[3]{x^5} \][/tex]
This means that raising \( x^5 \) to the power of \(\frac{1}{3}\) is equivalent to finding the cube root of \( x^5 \).
3. Simplifying the Expression:
Substituting back in, we have:
[tex]\[ x^{-\frac{5}{3}} = \frac{1}{x^{\frac{5}{3}}} = \frac{1}{\sqrt[3]{x^5}} \][/tex]
Therefore, the expression equivalent to \( x^{-\frac{5}{3}} \) is:
[tex]\[ \frac{1}{\sqrt[3]{x^5}} \][/tex]
Among the given options, this corresponds to:
[tex]\[ \boxed{\frac{1}{\sqrt[3]{x^5}}} \][/tex]
1. Understanding Negative Exponents:
[tex]\[ x^{-\frac{5}{3}} = \frac{1}{x^{\frac{5}{3}}} \][/tex]
A negative exponent indicates that we take the reciprocal of the base with the positive of that exponent.
2. Converting \( x^{\frac{5}{3}} \) to Radical Form:
We can express \( x^{\frac{5}{3}} \) using roots.
[tex]\[ x^{\frac{5}{3}} = (x^5)^{\frac{1}{3}} = \sqrt[3]{x^5} \][/tex]
This means that raising \( x^5 \) to the power of \(\frac{1}{3}\) is equivalent to finding the cube root of \( x^5 \).
3. Simplifying the Expression:
Substituting back in, we have:
[tex]\[ x^{-\frac{5}{3}} = \frac{1}{x^{\frac{5}{3}}} = \frac{1}{\sqrt[3]{x^5}} \][/tex]
Therefore, the expression equivalent to \( x^{-\frac{5}{3}} \) is:
[tex]\[ \frac{1}{\sqrt[3]{x^5}} \][/tex]
Among the given options, this corresponds to:
[tex]\[ \boxed{\frac{1}{\sqrt[3]{x^5}}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.