Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's break down the expression step by step to simplify it:
Given expression:
[tex]\[ (4v^3w)(-2w^3)^2 \][/tex]
1. Simplify the inner part \((-2w^3)^2\):
- When you raise a product to a power, you raise each factor in the product to that power. Hence:
[tex]\[ (-2w^3)^2 = (-2)^2 \cdot (w^3)^2 \][/tex]
- Calculate \((-2)^2\):
[tex]\[ (-2)^2 = 4 \][/tex]
- Calculate \((w^3)^2\):
[tex]\[ (w^3)^2 = w^{3 \cdot 2} = w^6 \][/tex]
- Putting it all together, we get:
[tex]\[ (-2w^3)^2 = 4w^6 \][/tex]
2. Substitute back into the original expression:
[tex]\[ (4v^3w)(4w^6) \][/tex]
3. Multiply the coefficients and combine like terms:
- Multiply the numerical coefficients:
[tex]\[ 4 \cdot 4 = 16 \][/tex]
- Combine the \(v\) terms:
[tex]\[ v^3 \][/tex]
Since there is only one \(v\) term, it remains \(v^3\).
- Combine the \(w\) terms:
[tex]\[ w \cdot w^6 = w^{1+6} = w^7 \][/tex]
Putting all the parts together, we get the simplified expression:
[tex]\[ 16v^3w^7 \][/tex]
So,
[tex]\[ (4v^3w)(-2w^3)^2 = 16v^3w^7 \][/tex]
Given expression:
[tex]\[ (4v^3w)(-2w^3)^2 \][/tex]
1. Simplify the inner part \((-2w^3)^2\):
- When you raise a product to a power, you raise each factor in the product to that power. Hence:
[tex]\[ (-2w^3)^2 = (-2)^2 \cdot (w^3)^2 \][/tex]
- Calculate \((-2)^2\):
[tex]\[ (-2)^2 = 4 \][/tex]
- Calculate \((w^3)^2\):
[tex]\[ (w^3)^2 = w^{3 \cdot 2} = w^6 \][/tex]
- Putting it all together, we get:
[tex]\[ (-2w^3)^2 = 4w^6 \][/tex]
2. Substitute back into the original expression:
[tex]\[ (4v^3w)(4w^6) \][/tex]
3. Multiply the coefficients and combine like terms:
- Multiply the numerical coefficients:
[tex]\[ 4 \cdot 4 = 16 \][/tex]
- Combine the \(v\) terms:
[tex]\[ v^3 \][/tex]
Since there is only one \(v\) term, it remains \(v^3\).
- Combine the \(w\) terms:
[tex]\[ w \cdot w^6 = w^{1+6} = w^7 \][/tex]
Putting all the parts together, we get the simplified expression:
[tex]\[ 16v^3w^7 \][/tex]
So,
[tex]\[ (4v^3w)(-2w^3)^2 = 16v^3w^7 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.