Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Rewrite this expression in simplest form.
[tex]\[
\left(4v^3w\right)\left(-2w^3\right)^2
\][/tex]

Sagot :

Let's break down the expression step by step to simplify it:

Given expression:
[tex]\[ (4v^3w)(-2w^3)^2 \][/tex]

1. Simplify the inner part \((-2w^3)^2\):
- When you raise a product to a power, you raise each factor in the product to that power. Hence:
[tex]\[ (-2w^3)^2 = (-2)^2 \cdot (w^3)^2 \][/tex]
- Calculate \((-2)^2\):
[tex]\[ (-2)^2 = 4 \][/tex]
- Calculate \((w^3)^2\):
[tex]\[ (w^3)^2 = w^{3 \cdot 2} = w^6 \][/tex]
- Putting it all together, we get:
[tex]\[ (-2w^3)^2 = 4w^6 \][/tex]

2. Substitute back into the original expression:
[tex]\[ (4v^3w)(4w^6) \][/tex]

3. Multiply the coefficients and combine like terms:
- Multiply the numerical coefficients:
[tex]\[ 4 \cdot 4 = 16 \][/tex]
- Combine the \(v\) terms:
[tex]\[ v^3 \][/tex]
Since there is only one \(v\) term, it remains \(v^3\).
- Combine the \(w\) terms:
[tex]\[ w \cdot w^6 = w^{1+6} = w^7 \][/tex]

Putting all the parts together, we get the simplified expression:
[tex]\[ 16v^3w^7 \][/tex]

So,
[tex]\[ (4v^3w)(-2w^3)^2 = 16v^3w^7 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.