Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which expression is equivalent to \(\sqrt[3]{x^5 y}\), we can follow the properties of exponents and radicals.
1. Recall the property of radicals which states that \(\sqrt[n]{a} = a^{1/n}\). Applying this to \(\sqrt[3]{x^5 y}\), we can rewrite it as \((x^5 y)^{1/3}\).
2. According to the properties of exponents, when you have a product within a radical, you can distribute the exponent to each term. Thus,
[tex]\[ (x^5 y)^{1/3} = (x^5)^{1/3} \cdot (y)^{1/3} \][/tex]
3. Now evaluate each term separately:
- For \(x^5\), we use the rule \((a^m)^n = a^{m \cdot n}\):
[tex]\[ (x^5)^{1/3} = x^{5 \cdot 1/3} = x^{5/3} \][/tex]
- For \(y\), applying the exponent of \(1/3\), we get:
[tex]\[ y^{1/3} \][/tex]
4. Combine the results from steps 3:
[tex]\[ (x^5)^{1/3} \cdot (y)^{1/3} = x^{5/3} \cdot y^{1/3} \][/tex]
Thus, the expression that is equivalent to \(\sqrt[3]{x^5 y}\) is:
[tex]\[ x^{\frac{5}{3}} y^{\frac{1}{3}} \][/tex]
Therefore, the correct choice is:
[tex]\[ x^{\frac{5}{3}} y^{\frac{1}{3}} \][/tex]
1. Recall the property of radicals which states that \(\sqrt[n]{a} = a^{1/n}\). Applying this to \(\sqrt[3]{x^5 y}\), we can rewrite it as \((x^5 y)^{1/3}\).
2. According to the properties of exponents, when you have a product within a radical, you can distribute the exponent to each term. Thus,
[tex]\[ (x^5 y)^{1/3} = (x^5)^{1/3} \cdot (y)^{1/3} \][/tex]
3. Now evaluate each term separately:
- For \(x^5\), we use the rule \((a^m)^n = a^{m \cdot n}\):
[tex]\[ (x^5)^{1/3} = x^{5 \cdot 1/3} = x^{5/3} \][/tex]
- For \(y\), applying the exponent of \(1/3\), we get:
[tex]\[ y^{1/3} \][/tex]
4. Combine the results from steps 3:
[tex]\[ (x^5)^{1/3} \cdot (y)^{1/3} = x^{5/3} \cdot y^{1/3} \][/tex]
Thus, the expression that is equivalent to \(\sqrt[3]{x^5 y}\) is:
[tex]\[ x^{\frac{5}{3}} y^{\frac{1}{3}} \][/tex]
Therefore, the correct choice is:
[tex]\[ x^{\frac{5}{3}} y^{\frac{1}{3}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.