Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Pretest: Polygons

The coordinates of the endpoints of [tex]\overline{AB}[/tex] and [tex]\overline{CD}[/tex] are [tex]A(3,6)[/tex], [tex]B(8,7)[/tex], [tex]C(3,3)[/tex], and [tex]D(8,4)[/tex]. Which statement describes how [tex]\overline{AB}[/tex] and [tex]\overline{CD}[/tex] are related?

A. [tex]\overline{AB} \parallel \overline{CD}[/tex]

B. [tex]\overline{AB} \perp \overline{CD}[/tex], and [tex]\overline{AB}[/tex] bisects [tex]\overline{CD}[/tex]

C. [tex]\overline{AB} \perp \overline{CD}[/tex], but [tex]\overline{AB}[/tex] does not bisect [tex]\overline{CD}[/tex]

D. [tex]\overline{AB}[/tex] is neither parallel nor perpendicular to [tex]\overline{CD}[/tex]


Sagot :

To determine the relationship between the line segments \(\overline{A B}\) and \(\overline{C D}\), we need to analyze their slopes and respective positions. Here's a step-by-step solution:

1. Calculate the slope of \(\overline{A B}\):
- Coordinates: \(A(3,6)\) and \(B(8,7)\).
- Formula for the slope between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ \text{slope of } \overline{A B} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Substituting the values:
[tex]\[ \text{slope of } \overline{A B} = \frac{7 - 6}{8 - 3} = \frac{1}{5} \][/tex]

2. Calculate the slope of \(\overline{C D}\):
- Coordinates: \(C(3,3)\) and \(D(8,4)\).
- Using the same formula:
[tex]\[ \text{slope of } \overline{C D} = \frac{4 - 3}{8 - 3} = \frac{1}{5} \][/tex]

3. Compare the slopes:
- Slope of \(\overline{A B}\) = \(\frac{1}{5}\).
- Slope of \(\overline{C D}\) = \(\frac{1}{5}\).

4. Since the slopes of \(\overline{A B}\) and \(\overline{C D}\) are equal:
- The lines are parallel if their slopes are equal.

Therefore, the correct statement is:

A. \(\overline{A B} \parallel \overline{C D}\).

So, the relationship between the segments is that [tex]\(\overline{A B}\)[/tex] is parallel to [tex]\(\overline{C D}\)[/tex].