Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Alright, let's tackle Cara's question step by step by completing the table and identifying the function for the taller candle.
### Step 1: Understanding the candles' initial height and burn rates
- Tall candle: Initial height of 16 cm, burns at 2.5 cm per hour.
- Short candle: Initial height of 12 cm, burns at 1.5 cm per hour.
### Step 2: Using algebra to find the candle heights over time
To find the height of each candle at different times, we use the following equations:
- For the tall candle:
\( T = 16 - 2.5h \)
- For the short candle:
\( S = 12 - 1.5h \)
Here, \( h \) represents the time in hours. We can use these equations to fill in the table.
### Step 3: Filling out the table
#### Time: 0 hours
- Tall candle: \( 16 - 2.5(0) = 16 \) cm
- Short candle: \( 12 - 1.5(0) = 12 \) cm
#### Time: 1 hour
- Tall candle: \( 16 - 2.5(1) = 13.5 \) cm
- Short candle: \( 12 - 1.5(1) = 10.5 \) cm
#### Time: 2 hours
- Tall candle: \( 16 - 2.5(2) = 11 \) cm
- Short candle: \( 12 - 1.5(2) = 9 \) cm
#### Time: 3 hours
- Tall candle: \( 16 - 2.5(3) = 8.5 \) cm
- Short candle: \( 12 - 1.5(3) = 7.5 \) cm
#### Time: 4 hours
- Tall candle: \( 16 - 2.5(4) = 6 \) cm
- Short candle: \( 12 - 1.5(4) = 6 \) cm
#### Time: 5 hours
- Tall candle: \( 16 - 2.5(5) = 3.5 \) cm
- Short candle: \( 12 - 1.5(5) = 4.5 \) cm
#### Time: 6 hours
- Tall candle: \( 16 - 2.5(6) = 1 \) cm
- Short candle: \( 12 - 1.5(6) = 3 \) cm
#### Time: 7 hours
- Tall candle: \( 16 - 2.5(7) = -1.5 \) cm (below zero)
- Short candle: \( 12 - 1.5(7) = 1.5 \) cm
### Step 4: Completing the table
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Time (hours)} & \text{16 cm candle height (cm)} & \text{12 cm candle height (cm)} \\ \hline 0 & 16 & 12 \\ \hline 1 & 13.5 & 10.5 \\ \hline 2 & 11.0 & 9.0 \\ \hline 3 & 8.5 & 7.5 \\ \hline 4 & 6.0 & 6.0 \\ \hline 5 & 3.5 & 4.5 \\ \hline 6 & 1.0 & 3.0 \\ \hline 7 & -1.5 & 1.5 \\ \hline \end{array} \][/tex]
### Step 5: Function in slope-intercept form for the tall candle
The equation for the height \( T \) of the taller candle in terms of the number of hours it has burned \( h \) is given by:
[tex]\[ T = 16 - 2.5h \][/tex]
### Conclusion
Thus, the function for the height of the taller candle is \( T = 16 - 2.5h \).
Therefore, the correct answer is:
[tex]\[ T = 16 - 2.5h \][/tex]
### Step 1: Understanding the candles' initial height and burn rates
- Tall candle: Initial height of 16 cm, burns at 2.5 cm per hour.
- Short candle: Initial height of 12 cm, burns at 1.5 cm per hour.
### Step 2: Using algebra to find the candle heights over time
To find the height of each candle at different times, we use the following equations:
- For the tall candle:
\( T = 16 - 2.5h \)
- For the short candle:
\( S = 12 - 1.5h \)
Here, \( h \) represents the time in hours. We can use these equations to fill in the table.
### Step 3: Filling out the table
#### Time: 0 hours
- Tall candle: \( 16 - 2.5(0) = 16 \) cm
- Short candle: \( 12 - 1.5(0) = 12 \) cm
#### Time: 1 hour
- Tall candle: \( 16 - 2.5(1) = 13.5 \) cm
- Short candle: \( 12 - 1.5(1) = 10.5 \) cm
#### Time: 2 hours
- Tall candle: \( 16 - 2.5(2) = 11 \) cm
- Short candle: \( 12 - 1.5(2) = 9 \) cm
#### Time: 3 hours
- Tall candle: \( 16 - 2.5(3) = 8.5 \) cm
- Short candle: \( 12 - 1.5(3) = 7.5 \) cm
#### Time: 4 hours
- Tall candle: \( 16 - 2.5(4) = 6 \) cm
- Short candle: \( 12 - 1.5(4) = 6 \) cm
#### Time: 5 hours
- Tall candle: \( 16 - 2.5(5) = 3.5 \) cm
- Short candle: \( 12 - 1.5(5) = 4.5 \) cm
#### Time: 6 hours
- Tall candle: \( 16 - 2.5(6) = 1 \) cm
- Short candle: \( 12 - 1.5(6) = 3 \) cm
#### Time: 7 hours
- Tall candle: \( 16 - 2.5(7) = -1.5 \) cm (below zero)
- Short candle: \( 12 - 1.5(7) = 1.5 \) cm
### Step 4: Completing the table
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Time (hours)} & \text{16 cm candle height (cm)} & \text{12 cm candle height (cm)} \\ \hline 0 & 16 & 12 \\ \hline 1 & 13.5 & 10.5 \\ \hline 2 & 11.0 & 9.0 \\ \hline 3 & 8.5 & 7.5 \\ \hline 4 & 6.0 & 6.0 \\ \hline 5 & 3.5 & 4.5 \\ \hline 6 & 1.0 & 3.0 \\ \hline 7 & -1.5 & 1.5 \\ \hline \end{array} \][/tex]
### Step 5: Function in slope-intercept form for the tall candle
The equation for the height \( T \) of the taller candle in terms of the number of hours it has burned \( h \) is given by:
[tex]\[ T = 16 - 2.5h \][/tex]
### Conclusion
Thus, the function for the height of the taller candle is \( T = 16 - 2.5h \).
Therefore, the correct answer is:
[tex]\[ T = 16 - 2.5h \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.