Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer: [tex]18^{\circ}[/tex] and [tex]72^{\circ}[/tex]
Step-by-step explanation:
Let the acute angles of the triangle be [tex]\alpha[/tex] and [tex]\beta[/tex], where [tex]\alpha > \beta[/tex].
- The acute angles of a right triangle add to [tex]\frac{\pi}{2}[/tex], so [tex]\alpha+\beta=\frac{\pi}{2}[/tex].
- It is also given that [tex]\alpha-\beta=\frac{3\pi}{10}[/tex].
Adding these equations yields:
[tex]2\alpha=\frac{4\pi}{5} \implies \alpha=\frac{2\pi}{5}[/tex]
Substituting this back into the first equation,
[tex]\frac{2\pi}{5}+\beta=\frac{\pi}{2} \implies \beta=\frac{\pi}{10}[/tex]
Converting these to degrees (by multiplying the radian measure by [tex]\frac{180}{\pi}[/tex]),
[tex]\alpha=\frac{2\pi}{5} \cdot \frac{180}{\pi}=72^{\circ}\\\\\beta=\frac{\pi}{10} \cdot \frac{180}{\pi}=18^{\circ}[/tex]
Therefore, the acute angles of the triangle are [tex]18^{\circ}[/tex] and [tex]72^{\circ}[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.