Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

The difference between two acute angles of right angle triangle is 3π / 10 radians. Find the angles in degrees.​

Sagot :

Answer: [tex]18^{\circ}[/tex] and [tex]72^{\circ}[/tex]

Step-by-step explanation:

Let the acute angles of the triangle be [tex]\alpha[/tex] and [tex]\beta[/tex], where [tex]\alpha > \beta[/tex].

  • The acute angles of a right triangle add to [tex]\frac{\pi}{2}[/tex], so [tex]\alpha+\beta=\frac{\pi}{2}[/tex].
  • It is also given that [tex]\alpha-\beta=\frac{3\pi}{10}[/tex].

Adding these equations yields:

[tex]2\alpha=\frac{4\pi}{5} \implies \alpha=\frac{2\pi}{5}[/tex]

Substituting this back into the first equation,

[tex]\frac{2\pi}{5}+\beta=\frac{\pi}{2} \implies \beta=\frac{\pi}{10}[/tex]

Converting these to degrees (by multiplying the radian measure by [tex]\frac{180}{\pi}[/tex]),

[tex]\alpha=\frac{2\pi}{5} \cdot \frac{180}{\pi}=72^{\circ}\\\\\beta=\frac{\pi}{10} \cdot \frac{180}{\pi}=18^{\circ}[/tex]

Therefore, the acute angles of the triangle are [tex]18^{\circ}[/tex] and [tex]72^{\circ}[/tex].