Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation \(\sin(2x) = \sqrt{2} \cos(x)\) on the interval \([0,2\pi)\), we'll start by using trigonometric identities to simplify and solve the equation step-by-step.
1. Expand \(\sin(2x)\) using the double-angle formula:
[tex]\[ \sin(2x) = 2\sin(x)\cos(x) \][/tex]
Thus, the given equation becomes:
[tex]\[ 2 \sin(x) \cos(x) = \sqrt{2} \cos(x) \][/tex]
2. Rearrange the equation and factor:
[tex]\[ 2 \sin(x) \cos(x) - \sqrt{2} \cos(x) = 0 \][/tex]
Factor out \(\cos(x)\):
[tex]\[ \cos(x) (2 \sin(x) - \sqrt{2}) = 0 \][/tex]
3. Solve for \(\cos(x) = 0\):
[tex]\[ \cos(x) = 0 \][/tex]
The values of \(x\) that satisfy \(\cos(x) = 0\) are:
[tex]\[ x = \frac{\pi}{2}, \frac{3\pi}{2} \][/tex]
4. Solve for \(2 \sin(x) - \sqrt{2} = 0\):
[tex]\[ 2 \sin(x) = \sqrt{2} \][/tex]
[tex]\[ \sin(x) = \frac{\sqrt{2}}{2} \][/tex]
The values of \(x\) that satisfy \(\sin(x) = \frac{\sqrt{2}}{2}\) are:
[tex]\[ x = \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
5. List all solutions within the given interval \([0, 2\pi)\):
We combine the solutions from both parts:
[tex]\[ x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
6. Verify the solutions lie in the desired interval and order them:
[tex]\[ x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{3\pi}{2} \][/tex]
Thus, the solutions to the equation \(\sin(2x) = \sqrt{2} \cos(x)\) on the interval \([0, 2\pi)\) are:
[tex]\[ x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{3\pi}{2} \][/tex]
Additionally, we can express the numerical values of these solutions:
[tex]\[ x \approx 0.785, 1.571, 2.356, 4.712 \][/tex]
Only those within \([0, 2\pi)\) are:
[tex]\[ x \approx 0.785398163397448, 1.57079632679490, 2.35619449019234 \][/tex]
So, confirming the valid solutions in the interval are:
[tex]\[ x \approx \boxed{0.785398163397448, 1.57079632679490, 2.35619449019234} \][/tex]
1. Expand \(\sin(2x)\) using the double-angle formula:
[tex]\[ \sin(2x) = 2\sin(x)\cos(x) \][/tex]
Thus, the given equation becomes:
[tex]\[ 2 \sin(x) \cos(x) = \sqrt{2} \cos(x) \][/tex]
2. Rearrange the equation and factor:
[tex]\[ 2 \sin(x) \cos(x) - \sqrt{2} \cos(x) = 0 \][/tex]
Factor out \(\cos(x)\):
[tex]\[ \cos(x) (2 \sin(x) - \sqrt{2}) = 0 \][/tex]
3. Solve for \(\cos(x) = 0\):
[tex]\[ \cos(x) = 0 \][/tex]
The values of \(x\) that satisfy \(\cos(x) = 0\) are:
[tex]\[ x = \frac{\pi}{2}, \frac{3\pi}{2} \][/tex]
4. Solve for \(2 \sin(x) - \sqrt{2} = 0\):
[tex]\[ 2 \sin(x) = \sqrt{2} \][/tex]
[tex]\[ \sin(x) = \frac{\sqrt{2}}{2} \][/tex]
The values of \(x\) that satisfy \(\sin(x) = \frac{\sqrt{2}}{2}\) are:
[tex]\[ x = \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
5. List all solutions within the given interval \([0, 2\pi)\):
We combine the solutions from both parts:
[tex]\[ x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
6. Verify the solutions lie in the desired interval and order them:
[tex]\[ x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{3\pi}{2} \][/tex]
Thus, the solutions to the equation \(\sin(2x) = \sqrt{2} \cos(x)\) on the interval \([0, 2\pi)\) are:
[tex]\[ x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{3\pi}{2} \][/tex]
Additionally, we can express the numerical values of these solutions:
[tex]\[ x \approx 0.785, 1.571, 2.356, 4.712 \][/tex]
Only those within \([0, 2\pi)\) are:
[tex]\[ x \approx 0.785398163397448, 1.57079632679490, 2.35619449019234 \][/tex]
So, confirming the valid solutions in the interval are:
[tex]\[ x \approx \boxed{0.785398163397448, 1.57079632679490, 2.35619449019234} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.