Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which form of \( g(x) \) maintains the same domain as \( f(x) \) and preserves other properties, including having a single x-intercept, analyze each option carefully.
A. \( g(x) = 10f(x) \)
- In this case, \( g(x) \) is simply \( f(x) \) scaled by a factor of 10. Scaling a function does not change its x-intercepts because the places where \( f(x) = 0 \) remain the same. Since the domain of \( f \) is \( D \), the domain of \( g \) remains \( D \).
B. \( g(x) = f(x + 10) \)
- Here, \( g(x) \) is \( f(x) \) shifted 10 units to the left. Shifting the input of a function horizontally does not affect the domain, so the domain of \( g \) is still \( D \). The x-intercept would be shifted, but this does not affect the number of x-intercepts.
C. \( g(x) = f(x) + 10 \)
- Adding 10 to \( f(x) \) shifts the entire graph of \( f \) upwards by 10 units. While the domain remains unchanged (still \( D \)), this vertical shift does not affect the x-intercepts directly unless \( f(x) \) originally crossed the x-axis.
D. \( g(x) = f(x) - 10 \)
- Subtracting 10 from \( f(x) \) shifts the graph of \( f \) downwards by 10 units. This also does not affect the domain, keeping it \( D \), and, like option C, modifies the y-values without changing the place of the x-intercepts directly.
Considering that both \( f \) and \( g \) must have a single x-intercept, which implies a single solution to \( f(x)=0 \) and subsequently any similar form of \( g(x) \) must not alter this count in terms of shifting the x-intercepts only, we deduced:
Correct Answer:
If all conditions based on internal analysis are preserved, the direct scaling \( g(x) = 10f(x) \) (option A) does not compromise the domain or the x-intercept count of the function. Thus:
The correct answer is: A. [tex]\( g(x) = 10f(x) \)[/tex]
A. \( g(x) = 10f(x) \)
- In this case, \( g(x) \) is simply \( f(x) \) scaled by a factor of 10. Scaling a function does not change its x-intercepts because the places where \( f(x) = 0 \) remain the same. Since the domain of \( f \) is \( D \), the domain of \( g \) remains \( D \).
B. \( g(x) = f(x + 10) \)
- Here, \( g(x) \) is \( f(x) \) shifted 10 units to the left. Shifting the input of a function horizontally does not affect the domain, so the domain of \( g \) is still \( D \). The x-intercept would be shifted, but this does not affect the number of x-intercepts.
C. \( g(x) = f(x) + 10 \)
- Adding 10 to \( f(x) \) shifts the entire graph of \( f \) upwards by 10 units. While the domain remains unchanged (still \( D \)), this vertical shift does not affect the x-intercepts directly unless \( f(x) \) originally crossed the x-axis.
D. \( g(x) = f(x) - 10 \)
- Subtracting 10 from \( f(x) \) shifts the graph of \( f \) downwards by 10 units. This also does not affect the domain, keeping it \( D \), and, like option C, modifies the y-values without changing the place of the x-intercepts directly.
Considering that both \( f \) and \( g \) must have a single x-intercept, which implies a single solution to \( f(x)=0 \) and subsequently any similar form of \( g(x) \) must not alter this count in terms of shifting the x-intercepts only, we deduced:
Correct Answer:
If all conditions based on internal analysis are preserved, the direct scaling \( g(x) = 10f(x) \) (option A) does not compromise the domain or the x-intercept count of the function. Thus:
The correct answer is: A. [tex]\( g(x) = 10f(x) \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.