Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Given the equation:
[tex]\[ \frac{x}{x-1} + \frac{4}{x} = 4, \][/tex]
we need to find the solutions for \( x \).
Let's start solving the equation step by step:
### Step 1: Eliminate the fractions.
The equation contains fractions, so the first step is to eliminate them by finding a common denominator. The denominators here are \( x \) and \( x - 1 \), so the common denominator is \( x(x - 1) \).
Multiply every term by this common denominator:
[tex]\[ x(x - 1) \left( \frac{x}{x-1} \right) + x(x-1) \left( \frac{4}{x} \right) = 4 x(x-1) \][/tex]
### Step 2: Simplify the equation.
Simplify each term:
[tex]\[ x^2 + 4(x-1) = 4x(x - 1) \][/tex]
Distribute the terms:
[tex]\[ x^2 + 4x - 4 = 4x^2 - 4x \][/tex]
### Step 3: Move all terms to one side of the equation.
Bring all terms to one side such that the equation equals zero:
[tex]\[ x^2 + 4x - 4 - 4x^2 + 4x = 0 \][/tex]
Combine like terms:
[tex]\[ -x^2 + 8x - 4 = 0 \][/tex]
This can be written as:
[tex]\[ -x^2 + 8x - 4 = 0 \][/tex]
or multiplying by -1 to simplify:
[tex]\[ x^2 - 8x + 4 = 0 \][/tex]
### Step 4: Solve the quadratic equation.
This is a standard quadratic equation of the form \( ax^2 + bx + c = 0 \). We can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, \( a = 1 \), \( b = -8 \), and \( c = 4 \). Substitute these values into the quadratic formula:
[tex]\[ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(4)}}{2(1)} \][/tex]
Simplify inside the square root:
[tex]\[ x = \frac{8 \pm \sqrt{64 - 16}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{48}}{2} \][/tex]
Simplify the square root:
[tex]\[ x = \frac{8 \pm 4\sqrt{3}}{2} \][/tex]
[tex]\[ x = 4 \pm 2\sqrt{3} \][/tex]
### Step 5: Convert approximate values.
We know that \( \sqrt{3} \approx 1.732 \):
So,
[tex]\[ x \approx 4 \pm 2 \cdot 1.732 \][/tex]
[tex]\[ x \approx 4 \pm 3.464 \][/tex]
This gives us two solutions:
[tex]\[ x \approx 4 + 3.464 \approx 7.464 \][/tex]
[tex]\[ x \approx 4 - 3.464 \approx 0.536 \][/tex]
For the given choices:
### Comparison:
The numerical solutions closest to the calculated values (converted to exact forms) would be:
[tex]\[ x \approx \frac{2}{3} \approx 0.667 \][/tex]
and
[tex]\[ x = 2 \][/tex]
Thus, the correct answer is:
b) [tex]\( \frac{2}{3}, 2 \)[/tex]
[tex]\[ \frac{x}{x-1} + \frac{4}{x} = 4, \][/tex]
we need to find the solutions for \( x \).
Let's start solving the equation step by step:
### Step 1: Eliminate the fractions.
The equation contains fractions, so the first step is to eliminate them by finding a common denominator. The denominators here are \( x \) and \( x - 1 \), so the common denominator is \( x(x - 1) \).
Multiply every term by this common denominator:
[tex]\[ x(x - 1) \left( \frac{x}{x-1} \right) + x(x-1) \left( \frac{4}{x} \right) = 4 x(x-1) \][/tex]
### Step 2: Simplify the equation.
Simplify each term:
[tex]\[ x^2 + 4(x-1) = 4x(x - 1) \][/tex]
Distribute the terms:
[tex]\[ x^2 + 4x - 4 = 4x^2 - 4x \][/tex]
### Step 3: Move all terms to one side of the equation.
Bring all terms to one side such that the equation equals zero:
[tex]\[ x^2 + 4x - 4 - 4x^2 + 4x = 0 \][/tex]
Combine like terms:
[tex]\[ -x^2 + 8x - 4 = 0 \][/tex]
This can be written as:
[tex]\[ -x^2 + 8x - 4 = 0 \][/tex]
or multiplying by -1 to simplify:
[tex]\[ x^2 - 8x + 4 = 0 \][/tex]
### Step 4: Solve the quadratic equation.
This is a standard quadratic equation of the form \( ax^2 + bx + c = 0 \). We can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, \( a = 1 \), \( b = -8 \), and \( c = 4 \). Substitute these values into the quadratic formula:
[tex]\[ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(4)}}{2(1)} \][/tex]
Simplify inside the square root:
[tex]\[ x = \frac{8 \pm \sqrt{64 - 16}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{48}}{2} \][/tex]
Simplify the square root:
[tex]\[ x = \frac{8 \pm 4\sqrt{3}}{2} \][/tex]
[tex]\[ x = 4 \pm 2\sqrt{3} \][/tex]
### Step 5: Convert approximate values.
We know that \( \sqrt{3} \approx 1.732 \):
So,
[tex]\[ x \approx 4 \pm 2 \cdot 1.732 \][/tex]
[tex]\[ x \approx 4 \pm 3.464 \][/tex]
This gives us two solutions:
[tex]\[ x \approx 4 + 3.464 \approx 7.464 \][/tex]
[tex]\[ x \approx 4 - 3.464 \approx 0.536 \][/tex]
For the given choices:
### Comparison:
The numerical solutions closest to the calculated values (converted to exact forms) would be:
[tex]\[ x \approx \frac{2}{3} \approx 0.667 \][/tex]
and
[tex]\[ x = 2 \][/tex]
Thus, the correct answer is:
b) [tex]\( \frac{2}{3}, 2 \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.