Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the equation \(\frac{x^2}{x-2} + 5 = \frac{5x - 6}{x-2}\) and find the possible values of \(x\), let's work through it step by step.
First, we will look at the given equation:
[tex]\[ \frac{x^2}{x-2} + 5 = \frac{5x - 6}{x-2} \][/tex]
1. Combine the fractions:
Since both fractions have the same denominator, we can combine them:
[tex]\[ \frac{x^2}{x-2} + 5 = \frac{5x - 6}{x-2} \][/tex]
2. Move all terms to one side of the equation:
Subtract \(\frac{5x - 6}{x-2}\) from both sides to set the equation to zero:
[tex]\[ \frac{x^2}{x-2} + 5 - \frac{5x - 6}{x-2} = 0 \][/tex]
3. Combine the fractions under a common denominator:
Since both terms are over the same denominator \(x-2\), we can combine them into a single fraction:
[tex]\[ \frac{x^2 - (5x - 6) + 5(x - 2)}{x-2} = 0 \][/tex]
4. Simplify the numerator:
Distribute and combine like terms in the numerator:
[tex]\[ x^2 - 5x + 6 + 5x - 10 = x^2 - 4 \][/tex]
5. Write the simplified fraction:
So the equation simplifies to:
[tex]\[ \frac{x^2 - 4}{x-2} = 0 \][/tex]
6. Solve the simplified numerator:
Since a fraction is zero when its numerator is zero (and its denominator is not zero):
[tex]\[ x^2 - 4 = 0 \][/tex]
7. Factor the numerator:
The quadratic \(x^2 - 4\) can be factored using difference of squares:
[tex]\[ (x - 2)(x + 2) = 0 \][/tex]
8. Find the roots of the equation:
Set each factor to zero and solve for \(x\):
[tex]\[ x - 2 = 0 \quad \text{or} \quad x + 2 = 0 \][/tex]
[tex]\[ x = 2 \quad \text{or} \quad x = -2 \][/tex]
9. Check for extraneous solutions:
- Note that the original denominator \(x-2\) must not be zero.
- \(x=2\) would make the denominator zero, so it is an extraneous solution and must be discarded.
Given the steps above, we find that the only valid solution to the equation is:
[tex]\[ x = -2 \][/tex]
So, the correct answer is:
c) -2
First, we will look at the given equation:
[tex]\[ \frac{x^2}{x-2} + 5 = \frac{5x - 6}{x-2} \][/tex]
1. Combine the fractions:
Since both fractions have the same denominator, we can combine them:
[tex]\[ \frac{x^2}{x-2} + 5 = \frac{5x - 6}{x-2} \][/tex]
2. Move all terms to one side of the equation:
Subtract \(\frac{5x - 6}{x-2}\) from both sides to set the equation to zero:
[tex]\[ \frac{x^2}{x-2} + 5 - \frac{5x - 6}{x-2} = 0 \][/tex]
3. Combine the fractions under a common denominator:
Since both terms are over the same denominator \(x-2\), we can combine them into a single fraction:
[tex]\[ \frac{x^2 - (5x - 6) + 5(x - 2)}{x-2} = 0 \][/tex]
4. Simplify the numerator:
Distribute and combine like terms in the numerator:
[tex]\[ x^2 - 5x + 6 + 5x - 10 = x^2 - 4 \][/tex]
5. Write the simplified fraction:
So the equation simplifies to:
[tex]\[ \frac{x^2 - 4}{x-2} = 0 \][/tex]
6. Solve the simplified numerator:
Since a fraction is zero when its numerator is zero (and its denominator is not zero):
[tex]\[ x^2 - 4 = 0 \][/tex]
7. Factor the numerator:
The quadratic \(x^2 - 4\) can be factored using difference of squares:
[tex]\[ (x - 2)(x + 2) = 0 \][/tex]
8. Find the roots of the equation:
Set each factor to zero and solve for \(x\):
[tex]\[ x - 2 = 0 \quad \text{or} \quad x + 2 = 0 \][/tex]
[tex]\[ x = 2 \quad \text{or} \quad x = -2 \][/tex]
9. Check for extraneous solutions:
- Note that the original denominator \(x-2\) must not be zero.
- \(x=2\) would make the denominator zero, so it is an extraneous solution and must be discarded.
Given the steps above, we find that the only valid solution to the equation is:
[tex]\[ x = -2 \][/tex]
So, the correct answer is:
c) -2
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.