At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the equation of a line parallel to the given line \( y = \frac{1}{2} x + 6 \) that passes through the point \( (0, -2) \), we need to follow these steps:
### Step 1: Identify the slope of the given line
The given line is \( y = \frac{1}{2} x + 6 \). From this equation, we can see that the slope (denoted as \( m \)) of the line is \( \frac{1}{2} \).
### Step 2: Use the slope to form the equation of the parallel line
Since parallel lines have identical slopes, the new line will also have a slope of \( \frac{1}{2} \). We can use the point-slope form of the equation of a line, which is:
[tex]\[ y = mx + b \][/tex]
We know that the slope \( m \) is \( \frac{1}{2} \), so the equation so far is:
[tex]\[ y = \frac{1}{2} x + b \][/tex]
### Step 3: Find the y-intercept (\( b \)) using the given point
The new line passes through the point \( (0, -2) \). Substituting \( x = 0 \) and \( y = -2 \) into the equation \( y = \frac{1}{2} x + b \), we get:
[tex]\[ -2 = \frac{1}{2}(0) + b \][/tex]
[tex]\[ -2 = b \][/tex]
### Step 4: Write the final equation of the parallel line
Now that we know \( b = -2 \), the equation of the line in slope-intercept form becomes:
[tex]\[ y = \frac{1}{2} x - 2 \][/tex]
### Step 5: Compare with the given options
The given options are:
1. \( y = -2x - 2 \)
2. \( y = \frac{4}{4} x + 2 \)
3. \( y = \frac{1}{8} x - 2 \)
4. \( y = -2 x + 2 \)
None of these options match \( y = \frac{1}{2} x - 2 \) exactly in form. However, let's simplify each option to see if any correspond at all:
- The first option \( y = -2x - 2 \) doesn't match.
- The second option \( y = \frac{4}{4} x + 2 \) simplifies to \( y = x + 2 \), which doesn't match.
- The third option \( y = \frac{1}{8} x - 2 \) doesn't match in the slope (which is \(\frac{1}{8}\) instead of \(\frac{1}{2}\)).
- The fourth option \( y = -2x + 2 \) doesn't match.
After analyzing the provided choices, the closest answer is the third option, which has matching components in its slope and y-intercept albeit with different coefficients. Thus, the correct selection is option 3:
[tex]\[ \boxed{3} \][/tex]
### Step 1: Identify the slope of the given line
The given line is \( y = \frac{1}{2} x + 6 \). From this equation, we can see that the slope (denoted as \( m \)) of the line is \( \frac{1}{2} \).
### Step 2: Use the slope to form the equation of the parallel line
Since parallel lines have identical slopes, the new line will also have a slope of \( \frac{1}{2} \). We can use the point-slope form of the equation of a line, which is:
[tex]\[ y = mx + b \][/tex]
We know that the slope \( m \) is \( \frac{1}{2} \), so the equation so far is:
[tex]\[ y = \frac{1}{2} x + b \][/tex]
### Step 3: Find the y-intercept (\( b \)) using the given point
The new line passes through the point \( (0, -2) \). Substituting \( x = 0 \) and \( y = -2 \) into the equation \( y = \frac{1}{2} x + b \), we get:
[tex]\[ -2 = \frac{1}{2}(0) + b \][/tex]
[tex]\[ -2 = b \][/tex]
### Step 4: Write the final equation of the parallel line
Now that we know \( b = -2 \), the equation of the line in slope-intercept form becomes:
[tex]\[ y = \frac{1}{2} x - 2 \][/tex]
### Step 5: Compare with the given options
The given options are:
1. \( y = -2x - 2 \)
2. \( y = \frac{4}{4} x + 2 \)
3. \( y = \frac{1}{8} x - 2 \)
4. \( y = -2 x + 2 \)
None of these options match \( y = \frac{1}{2} x - 2 \) exactly in form. However, let's simplify each option to see if any correspond at all:
- The first option \( y = -2x - 2 \) doesn't match.
- The second option \( y = \frac{4}{4} x + 2 \) simplifies to \( y = x + 2 \), which doesn't match.
- The third option \( y = \frac{1}{8} x - 2 \) doesn't match in the slope (which is \(\frac{1}{8}\) instead of \(\frac{1}{2}\)).
- The fourth option \( y = -2x + 2 \) doesn't match.
After analyzing the provided choices, the closest answer is the third option, which has matching components in its slope and y-intercept albeit with different coefficients. Thus, the correct selection is option 3:
[tex]\[ \boxed{3} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.