Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which ordered pair \((x, y)\) satisfies both inequalities:
[tex]\[ y > -3x + 3 \][/tex]
[tex]\[ y \geq 2x - 2 \][/tex]
we need to check each pair against both inequalities.
1. Pair (1, 0):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > 0 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 0 \][/tex] (True)
This pair does not satisfy the first inequality, so (1, 0) is not a solution.
2. Pair (-1, 1):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 6 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -4 \][/tex] (True)
This pair does not satisfy the first inequality, so (-1, 1) is not a solution.
3. Pair (2, 2):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -3 \][/tex] (True)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 2 \][/tex] (True)
This pair satisfies both inequalities, so (2, 2) is a solution.
4. Pair (0, 3):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 3 > -3(0) + 3 \rightarrow 3 > 3 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 3 \geq 2(0) - 2 \rightarrow 3 \geq -2 \][/tex] (True)
This pair does not satisfy the first inequality, so (0, 3) is not a solution.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] makes both inequalities true.
[tex]\[ y > -3x + 3 \][/tex]
[tex]\[ y \geq 2x - 2 \][/tex]
we need to check each pair against both inequalities.
1. Pair (1, 0):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > 0 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 0 \][/tex] (True)
This pair does not satisfy the first inequality, so (1, 0) is not a solution.
2. Pair (-1, 1):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 6 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -4 \][/tex] (True)
This pair does not satisfy the first inequality, so (-1, 1) is not a solution.
3. Pair (2, 2):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -3 \][/tex] (True)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 2 \][/tex] (True)
This pair satisfies both inequalities, so (2, 2) is a solution.
4. Pair (0, 3):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 3 > -3(0) + 3 \rightarrow 3 > 3 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 3 \geq 2(0) - 2 \rightarrow 3 \geq -2 \][/tex] (True)
This pair does not satisfy the first inequality, so (0, 3) is not a solution.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] makes both inequalities true.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.