Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure! Let's solve the system of equations step-by-step:
We are given the following system of equations:
[tex]\[ \left\{\begin{array}{l} \frac{2}{x} - \frac{1}{y} = 1 \\ \frac{1}{x} + \frac{5}{y} = 6 \end{array}\right. \][/tex]
First, we will simplify each equation by finding a common denominator for each expression.
Equation 1:
[tex]\[ \frac{2}{x} - \frac{1}{y} = 1 \][/tex]
Let \( \frac{1}{x} = a \) and \( \frac{1}{y} = b \). Then the first equation becomes:
[tex]\[ 2a - b = 1 \quad \text{(1)} \][/tex]
Equation 2:
[tex]\[ \frac{1}{x} + \frac{5}{y} = 6 \][/tex]
Using the same substitutions, the second equation becomes:
[tex]\[ a + 5b = 6 \quad \text{(2)} \][/tex]
Now, we have a system of linear equations:
[tex]\[ \left\{\begin{array}{l} 2a - b = 1 \\ a + 5b = 6 \end{array}\right. \][/tex]
We can solve this system using the substitution or elimination method. We'll use the elimination method here.
First, we can multiply Equation 2 by 2 to align the coefficients of \(a\) in both equations:
[tex]\[ 2(a + 5b) = 2 \cdot 6 \][/tex]
[tex]\[ 2a + 10b = 12 \quad \text{(3)} \][/tex]
Now we have:
[tex]\[ \left\{\begin{array}{l} 2a - b = 1 \quad \text{(1)} \\ 2a + 10b = 12 \quad \text{(3)} \end{array}\right. \][/tex]
Next, subtract Equation 1 from Equation 3:
[tex]\[ (2a + 10b) - (2a - b) = 12 - 1 \][/tex]
[tex]\[ 2a + 10b - 2a + b = 11 \][/tex]
[tex]\[ 11b = 11 \][/tex]
[tex]\[ b = 1 \][/tex]
Now that we have \( b = 1 \), we can substitute this value back into Equation 2 to find \( a \):
[tex]\[ a + 5b = 6 \][/tex]
[tex]\[ a + 5 \cdot 1 = 6 \][/tex]
[tex]\[ a + 5 = 6 \][/tex]
[tex]\[ a = 1 \][/tex]
Now we have \( \frac{1}{x} = a \) and \( \frac{1}{y} = b \):
[tex]\[ \frac{1}{x} = 1 \quad \Rightarrow \quad x = 1 \][/tex]
[tex]\[ \frac{1}{y} = 1 \quad \Rightarrow \quad y = 1 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x = 1, \quad y = 1 \][/tex]
We are given the following system of equations:
[tex]\[ \left\{\begin{array}{l} \frac{2}{x} - \frac{1}{y} = 1 \\ \frac{1}{x} + \frac{5}{y} = 6 \end{array}\right. \][/tex]
First, we will simplify each equation by finding a common denominator for each expression.
Equation 1:
[tex]\[ \frac{2}{x} - \frac{1}{y} = 1 \][/tex]
Let \( \frac{1}{x} = a \) and \( \frac{1}{y} = b \). Then the first equation becomes:
[tex]\[ 2a - b = 1 \quad \text{(1)} \][/tex]
Equation 2:
[tex]\[ \frac{1}{x} + \frac{5}{y} = 6 \][/tex]
Using the same substitutions, the second equation becomes:
[tex]\[ a + 5b = 6 \quad \text{(2)} \][/tex]
Now, we have a system of linear equations:
[tex]\[ \left\{\begin{array}{l} 2a - b = 1 \\ a + 5b = 6 \end{array}\right. \][/tex]
We can solve this system using the substitution or elimination method. We'll use the elimination method here.
First, we can multiply Equation 2 by 2 to align the coefficients of \(a\) in both equations:
[tex]\[ 2(a + 5b) = 2 \cdot 6 \][/tex]
[tex]\[ 2a + 10b = 12 \quad \text{(3)} \][/tex]
Now we have:
[tex]\[ \left\{\begin{array}{l} 2a - b = 1 \quad \text{(1)} \\ 2a + 10b = 12 \quad \text{(3)} \end{array}\right. \][/tex]
Next, subtract Equation 1 from Equation 3:
[tex]\[ (2a + 10b) - (2a - b) = 12 - 1 \][/tex]
[tex]\[ 2a + 10b - 2a + b = 11 \][/tex]
[tex]\[ 11b = 11 \][/tex]
[tex]\[ b = 1 \][/tex]
Now that we have \( b = 1 \), we can substitute this value back into Equation 2 to find \( a \):
[tex]\[ a + 5b = 6 \][/tex]
[tex]\[ a + 5 \cdot 1 = 6 \][/tex]
[tex]\[ a + 5 = 6 \][/tex]
[tex]\[ a = 1 \][/tex]
Now we have \( \frac{1}{x} = a \) and \( \frac{1}{y} = b \):
[tex]\[ \frac{1}{x} = 1 \quad \Rightarrow \quad x = 1 \][/tex]
[tex]\[ \frac{1}{y} = 1 \quad \Rightarrow \quad y = 1 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x = 1, \quad y = 1 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.