Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Solve the system of equations:

[tex]\[
\left\{\begin{array}{l}
\frac{2}{x}-\frac{1}{y}=1 \\
\frac{1}{x}+\frac{5}{y}=6
\end{array}\right.
\][/tex]

Sagot :

Sure! Let's solve the system of equations step-by-step:

We are given the following system of equations:

[tex]\[ \left\{\begin{array}{l} \frac{2}{x} - \frac{1}{y} = 1 \\ \frac{1}{x} + \frac{5}{y} = 6 \end{array}\right. \][/tex]

First, we will simplify each equation by finding a common denominator for each expression.

Equation 1:
[tex]\[ \frac{2}{x} - \frac{1}{y} = 1 \][/tex]
Let \( \frac{1}{x} = a \) and \( \frac{1}{y} = b \). Then the first equation becomes:
[tex]\[ 2a - b = 1 \quad \text{(1)} \][/tex]

Equation 2:
[tex]\[ \frac{1}{x} + \frac{5}{y} = 6 \][/tex]
Using the same substitutions, the second equation becomes:
[tex]\[ a + 5b = 6 \quad \text{(2)} \][/tex]

Now, we have a system of linear equations:
[tex]\[ \left\{\begin{array}{l} 2a - b = 1 \\ a + 5b = 6 \end{array}\right. \][/tex]

We can solve this system using the substitution or elimination method. We'll use the elimination method here.

First, we can multiply Equation 2 by 2 to align the coefficients of \(a\) in both equations:
[tex]\[ 2(a + 5b) = 2 \cdot 6 \][/tex]
[tex]\[ 2a + 10b = 12 \quad \text{(3)} \][/tex]

Now we have:
[tex]\[ \left\{\begin{array}{l} 2a - b = 1 \quad \text{(1)} \\ 2a + 10b = 12 \quad \text{(3)} \end{array}\right. \][/tex]

Next, subtract Equation 1 from Equation 3:
[tex]\[ (2a + 10b) - (2a - b) = 12 - 1 \][/tex]
[tex]\[ 2a + 10b - 2a + b = 11 \][/tex]
[tex]\[ 11b = 11 \][/tex]
[tex]\[ b = 1 \][/tex]

Now that we have \( b = 1 \), we can substitute this value back into Equation 2 to find \( a \):
[tex]\[ a + 5b = 6 \][/tex]
[tex]\[ a + 5 \cdot 1 = 6 \][/tex]
[tex]\[ a + 5 = 6 \][/tex]
[tex]\[ a = 1 \][/tex]

Now we have \( \frac{1}{x} = a \) and \( \frac{1}{y} = b \):
[tex]\[ \frac{1}{x} = 1 \quad \Rightarrow \quad x = 1 \][/tex]
[tex]\[ \frac{1}{y} = 1 \quad \Rightarrow \quad y = 1 \][/tex]

Therefore, the solution to the system of equations is:
[tex]\[ x = 1, \quad y = 1 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.