Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the end behavior of the rational function \( f(x)=\frac{x^2-100}{x^2-3x-4} \), we analyze the behavior of the function as \( x \) approaches \( \pm\infty \).
First, let's examine the leading terms in the numerator and the denominator as \( x \) becomes very large (either positively or negatively):
1. The leading term in the numerator \( x^2 - 100 \) is \( x^2 \).
2. The leading term in the denominator \( x^2 - 3x - 4 \) is also \( x^2 \).
Since the lower degree terms (\(-100\) in the numerator and \(-3x - 4\) in the denominator) become negligible when \( x \) is very large, we can approximate the function by considering only the leading terms:
[tex]\[ f(x) \approx \frac{x^2}{x^2} = 1 \][/tex]
Thus, as \( x \) approaches \( -\infty \) or \( \infty \), the function \( f(x) \) approaches:
[tex]\[ 1 \][/tex]
Therefore, the correct answer is:
B. The function approaches 1 as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex] and [tex]\( \infty \)[/tex].
First, let's examine the leading terms in the numerator and the denominator as \( x \) becomes very large (either positively or negatively):
1. The leading term in the numerator \( x^2 - 100 \) is \( x^2 \).
2. The leading term in the denominator \( x^2 - 3x - 4 \) is also \( x^2 \).
Since the lower degree terms (\(-100\) in the numerator and \(-3x - 4\) in the denominator) become negligible when \( x \) is very large, we can approximate the function by considering only the leading terms:
[tex]\[ f(x) \approx \frac{x^2}{x^2} = 1 \][/tex]
Thus, as \( x \) approaches \( -\infty \) or \( \infty \), the function \( f(x) \) approaches:
[tex]\[ 1 \][/tex]
Therefore, the correct answer is:
B. The function approaches 1 as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex] and [tex]\( \infty \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.